Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hbvvyv

vẽ hình nx nha

Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 20:24

1: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

2: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(3\right)\)

Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(4\right)\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

3: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có

\(\widehat{KOA}\) chung

Do đó: ΔOKA đồng dạng với ΔOHF

=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)

=>\(OH\cdot OA=OK\cdot OF\left(5\right)\)

Xét ΔOCA vuông tại C có CH là đường cao

nên \(OH\cdot OA=OC^2=OD^2\left(6\right)\)

Từ (5) và (6) suy ra \(OK\cdot OF=OD^2\)

=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

Xét ΔOKD và ΔODF có

\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

\(\widehat{KOD}\) chung

Do đó: ΔOKD đồng dạng với ΔODF

=>\(\widehat{ODF}=\widehat{OKD}=90^0\)

=>FD là tiếp tuyến của (O;R)

hoàng gia bảo 9a
8 tháng 12 2023 lúc 20:50

o R A B C D E


Các câu hỏi tương tự
hbvvyv
Xem chi tiết
hbvvyv
Xem chi tiết
hbvvyv
Xem chi tiết
hbvvyv
Xem chi tiết
hbvvyv
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết
Phong Lê
Xem chi tiết
hbvvyv
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết