Tung 1 con súc sắc cân đối và đồng chất hai lần liên tiếp. Gọi A là biến cố ‘tổng số chấm xuất hiện ở hai lần tung là một số nhỏ hơn 10’. Xác suất của biến cố A là
A. 1 6
B. 5 6
C. 31 36
D. 32 36
Gieo một con xúc sắc cân đối, đồng chất hai lần. Xác suất để cả hai lần đều xuất hiện mặt sáu chấm bằng
A. 1 36
B. 5 36
C. 35 36
D. 31 36
Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
A. 8 49
B. 4 9
C. 1 12
D. 3 49
Gieo hai con xúc sắc cân đối và đồng chất 1 lần. Mỗi con xúc sắc có số chấm các mặt là 1,2,3,4,5,6, con xúc sắc còn lại có số chấm các mặt là 2,3,4,5,6,6. Tính xác suất để tổng số chấm xuất hiện bằng
A. 5/36
B. 1/5
C. 6/35
D. 1/6
Tung hai con súc sắc 3 lần độc lập với nhau. Tính xác suất để có đúng một lần tổng số chấm xuất hiện trên hai con súc sắc bằng 6. Kết quả làm tròn đến 3 ba chữ số ở phần thập phân)
A. 0,120.
B. 0,319.
C. 0,718.
D. 0,309.
Gieo một con xúc xắc 2 lần. Xác suất để mặt 6 chấm không xuất hiện là
A. 25 36 .
B. 11 36 .
C. 1 6 .
D. 2 9 .
Gieo một con xúc sắc cân đối đồng chất. Giả sử con xúc sắc xuất hiện mặt b chấm. Xác suất để phương trình x2 –bx+b -1=0 có nghiệm lớn hơn 3 bằng
A. 1/3
B. 5/6
C. 2/3
D. 1/2
Gieo một con xúc sắc cân đối đồng chất. Giả sử con xúc sắc xuất hiện mặt b chấm. Xác suất để phương trình x 2 - b x + b - 1 = 0 có nghiệm lớn hơn 3 bằng
A. 1 3
B. 5 6
C. 2 3
D. 1 2
Kết quả (b;c) của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là sô chấm xuất hiện ở lần gieo thứ nhất, c là số chấm xuất hiện ở lần gieo thứ hai được thay vào phương trình bậc hai x 2 + b x + x = 0 Tính xác suất để phương trình bậc hai đó vô nghiệm.
A. 7/12
B. 23/36
C. 17/36
D. 5/36