Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
A. 8 49
B. 4 9
C. 1 12
D. 3 49
Gieo ngẫu nhiên hai con súc sắc cân đối đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con súc sắc đó bằng 7
A. 7 12
B. 1 6
C. 1 2
D. 1 3
Tung 1 con súc sắc cân đối và đồng chất hai lần liên tiếp. Gọi A là biến cố ‘tổng số chấm xuất hiện ở hai lần tung là một số nhỏ hơn 10’. Xác suất của biến cố A là
A. 1 6
B. 5 6
C. 31 36
D. 32 36
Kết quả (b;c) của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là sô chấm xuất hiện ở lần gieo thứ nhất, c là số chấm xuất hiện ở lần gieo thứ hai được thay vào phương trình bậc hai x 2 + b x + x = 0 Tính xác suất để phương trình bậc hai đó vô nghiệm.
A. 7/12
B. 23/36
C. 17/36
D. 5/36
Gieo một con súc sắc cân đối và đồng chất ba lần liên tiếp. Gọi P là tích ba số ở ba lần tung (mỗi số là số chấm trên mặt xuất hiện ờ mỗi lần tung), tính xác suất sao cho P không chia hết cho 6.
A. 82 216
B. 90 216
C. 83 216
D. 60 216
Kết quả b , c của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm suất hiện trong lần gieo đầu, c là số chấm suất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai x 2 + b x + c = 0 . Tính xác suất để phương trình có nghiệm
A. 19 36
B. 1 18
C. 1 2
D. 17 36
Gieo đồng thời hai con súc sắc. Xác suất để số chấm trên mặt xuất hiện của cả hai con súc sắc đều là số chẵn bằng
A. 1 4
B. 1 12
C. 1 36
D. 1 6
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5 bằng
A. 2 9
B. 1 6
C. 5 18
D. 5 12
Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương trình x 2 + b x + c x + 1 = 0 * . Xác suất để phương trình (*) vô nghiệm là :
A. 17 36 .
B. 1 2 .
C. 1 6 .
D. 19 36 .