Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC), AC = AD = 4, AB = 3, BC = 5. Tính khoảng cách từ điểm A đến mặt phẳng (BCD).
A. 34 12
B. 12 34
C. 769 60
D. 60 769
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng ( A B C ) , A C = A D = 4 , B C = 5 . Tính khoảng cách d từ điểm A đến mặt phẳng (BCD)
Cho tứ diện ABCD có AB = AD = a 2 , BC = BD = a và CA = CD = x. Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là:
A.600
B.450
C.900
D.1200
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC). Biết rằng AC = AD = 4cm, AB = 3cm, BC = 5cm. Tính khoảng cách từ điểm A tới mặt phẳng (BCD)
Cho tứ diện ABCD có cạnh DA vuông góc với mặt phẳng (ABC) và AB=3cm, AC=4cm, AD= 6 CM, BC=5cm. Khoảng cách từ A đến mặt phẳng (BCD) bằng
Cho tứ diện ABCD có A B = a , A C = a 2 , A D = a 3 các tam giác ABC,ACD, ABD là các tam giác vuông tại đỉnh A. Tính khoảng cách d từ điểm A đến mặt phẳng (BCD).
Cho tứ diện ABCD có B A C ^ = C A D ^ = D A B ^ = 90 0 , A B = a , A C = 2 , A D = 3 . Khoảng cách từ A đến mặt phẳng (BCD) là
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 o . M là trung điểm AB, N ∈ B C sao cho . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC).
A. 2 a 21 7 .
B. a 21 7 .
C. a 7 7
D. 2 a 7 7
Cho tứ diện ABCD có A B = a ; A C = a 2 ; A D = a 3 các tam giác ABC, ACD, ABD là các tam giác vuông tại đỉnh A. Khoảng cách d từ điểm A đến mặt phẳng (BCD) là
A. d = a 66 11
B. d = a 6 3
C. d = a 30 5
D. d = a 3 2