Cho tứ diện ABCD có A B = a ; A C = a 2 ; A D = a 3 các tam giác ABC, ACD, ABD là các tam giác vuông tại đỉnh A. Khoảng cách d từ điểm A đến mặt phẳng (BCD) là
A. d = a 66 11
B. d = a 6 3
C. d = a 30 5
D. d = a 3 2
Cho tứ diện ABCD có CD=a 2 , ∆ ABC là tam giác đều cạnh a, ∆ ACD vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích khối cầu ngoại tiếp tứ diện ABCD bằng
Cho tứ diện ABCD có C D = a 2 , ∆ A B C là tam giác đều cạnh a, ∆ A C D vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng
A. 4 πa 3 3
B. πa 3 6
C. 4 πa 3
D. πa 3 3 2
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 o . M là trung điểm AB, N ∈ B C sao cho . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC).
A. 2 a 21 7 .
B. a 21 7 .
C. a 7 7
D. 2 a 7 7
Cho hình chóp ABCD có đáy BCD là tam giác vuông cân tại B, CD= a 2 , AB vuông góc với mặt phẳng đáy, AB=b. Khoảng cách từ B đến (ACD) là
A. a b 2 b 2 + a 2
B. 2 b 2 + a 2 a b
C. 1 a b
D. a b
Cho tứ diện ABCD có ABC là tam giác đều cạnh a tam giác BCD cân tại D và nằm trong mặt phẳng vuông góc với (ABC). Biết AD hợp với mặt phẳng (ABC) một góc 60°. Tính thể tích V của khối tứ diện ABCD.
A. V = a 3 3 6
B. V = a 3 12
C. V = a 3 3 8
D. V = a 3 3 24
Cho tứ diện ABCD có đáy BCD 1à tam giác đều cạnh a và có thể tích V = a 3 3 2 . Khoảng cách từ A đến mặt phẳng (BCD) là.
A. a
B. 6a
C. 3a
D. 2a
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trọng tâm của các tam giác ABD, ABC và E là điểm đối xứng với điểm B qua điểm D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V
Cho khối chóp S. ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a, tam giác BCD cân tại C và B C D ^ = 120 0 , S A ⊥ A B C D và SA=a. Mặt phẳng (P) đi qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại M, N, P. Tính thể tích khối chóp S. AMNP.
A. a 3 3 42
B. 2 a 3 3 21
C. a 3 3 14
D. a 3 3 12