Cho tứ diện ABCD có cạnh DA vuông góc với mặt phẳng (ABC) và AB=3cm, AC=4cm, AD= 6 CM, BC=5cm. Khoảng cách từ A đến mặt phẳng (BCD) bằng
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC). Biết rằng AC = AD = 4cm, AB = 3cm, BC = 5cm. Tính thể tích tứ diện ABCD
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC), AC = AD = 4, AB = 3, BC = 5. Tính khoảng cách từ điểm A đến mặt phẳng (BCD).
A. 34 12
B. 12 34
C. 769 60
D. 60 769
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng ( A B C ) , A C = A D = 4 , B C = 5 . Tính khoảng cách d từ điểm A đến mặt phẳng (BCD)
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 o . M là trung điểm AB, N ∈ B C sao cho . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC).
A. 2 a 21 7 .
B. a 21 7 .
C. a 7 7
D. 2 a 7 7
Tứ diện ABCD có AB=CD=4, AC=BD=5, AD=BC=6. Tính khoảng cách từ điểm A đến mặt phẳng (BCD).
Cho tứ diện ABCD có A B = a , A C = a 2 , A D = a 3 các tam giác ABC,ACD, ABD là các tam giác vuông tại đỉnh A. Tính khoảng cách d từ điểm A đến mặt phẳng (BCD).
Cho tứ diện A B C D có DA vuông góc với mặt phẳng ( A B C ) và A D = a , A C = 2 a , cạnh BC vuông góc với AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện A B C D .
Cho tứ diện ABCD có ABC là tam giác đều cạnh a tam giác BCD cân tại D và nằm trong mặt phẳng vuông góc với (ABC). Biết AD hợp với mặt phẳng (ABC) một góc 60°. Tính thể tích V của khối tứ diện ABCD.
A. V = a 3 3 6
B. V = a 3 12
C. V = a 3 3 8
D. V = a 3 3 24