Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
KHÔI MINH

Từ điểm K ở bên ngoài đường tròn (O), kẻ các tiếp tuyến KB, KD với đường tròn (B,D là các tiếp
điểm). Đường thẳng d đi qua K cắt đường tròn (O) tại hai điểm phân biệt A và C (O không thuộc (d),
A nằm giữa Kvà C). Gọi I là trung điểm của DB.
a) Chứng minh Tứ giác KBOD nội tiếp.
b) Chứng minh KA.KC = KI.KO
c) Kẻ dây CN // dây DB (N khác C). Chứng minh 3 điểm A,I,N thẳng hàng

 

Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 19:59

a: Xét tứ giác KBOD có

\(\widehat{OBK}+\widehat{ODK}=180^0\)

=>KBOD là tứ giác nội tiếp

b: Xét (O) có

KB,KD là tiếp tuyến

=>KB=KD

mà OB=OD

nên OK là trung trực của BD

=>OK cắt BD tại trung điểm của BD

=>O,I,K thẳng hàng và OK\(\perp\)BD tại I

Xét ΔKBA và ΔKCB có

\(\widehat{KBA}=\widehat{KCB}\)

\(\widehat{BKA}\) chung

Do đó: ΔKBA đồng dạng với ΔKCB

=>KB/KC=KA/KB

=>\(KB^2=KA\cdot KC\)(1)

Xét ΔKBO vuông tại B có BI là đường cao

nên \(KI\cdot KO=KB^2\left(2\right)\)

Từ (1) và (2) suy ra \(KA\cdot KC=KI\cdot KO\)


Các câu hỏi tương tự
Đhffyhaìoh
Xem chi tiết
Ngọc Nhí Nhảnh
Xem chi tiết
Đoàn Đình Hoàng
Xem chi tiết
Trung Nam Truong
Xem chi tiết
Vũ Christina
Xem chi tiết
Đoàn Đình Hoàng
Xem chi tiết
YunTae
Xem chi tiết
Hồ Tài
Xem chi tiết
Pham Trong Bach
Xem chi tiết