Gọi BC và EF cắt OA lần lượt tại H và I.
Dễ thấy OA là trung trực của BC => OA vuông góc BC (tại H)
Vì E là trung điểm AB, F là trung điểm AC nên EF// BC => EF vuông góc OA (tại I)
Đồng thời EF đi qua trung điểm của AH => IH = IA = AH/2
Áp dụng ĐL Pytagoras và hệ thức lượng trong tam giác vuông, ta có:
MD2 = OM2 - OD2 = IM2 + OI2 - OC2 = IM2 + OH2 + 2OH.HI + HI2 - OC2
= IM2 + IA2 + OH.AH - (OC2 - OH2) = AM2 + CH2 - CH2 = AM2
Vậy thì MD = MA (đpcm).