Từ A ngoài (O), bán kính R, vẽ tiếp tuyến AE và dây EF vuông góc với OA tại M
a) cho R =10cm,OM =6cm. Tính EF
b) c/m AF là tiếp tuyến của (O)
c) kẻ đường kính EC, tiếp tuyến với (O) tại C cắt EF tại D. Tính EM.ED theo R
d) kẻ tiếp tuyến DB. c/m A,B,C thẳng hàng
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O;R) và điểm A với OA=2R . Từ A vẽ 2 tiếp tuyến AE, AF đến (O) (E , F là 2 tiếp điểm). Đường thẳng OA cắt (O) tại C và D (O nằm giữa A và C)
a) Tính diện tích tứ giác AECF theo R
b) Từ O vẽ đt vuông góc với OE cắt AF tại M. Tính tỉ số diện tích 2 tam giác OAM và ÒM
c) Đường thẳng kẻ từ D vuông góc với OE cắt EC tại Q. c/m các đường thẳng AC,EF,QM đồng quy.
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
cho(O;R) và điểm A nằm ngoài đường tròn.Qua A kẻ tiếp tuyến AB với (O;R) (B là tiếp điểm),Tia Ax nằm giữa AB và AO cắt (O)tại C và D .(C nằm giữa A và D).M là trung điểm của dây CD,kẻ BH vuông góc với AO tại H.a,Tính OH,OA theo R.b,Chứng minh 4 điểm A,B,M,O cùng thuộc một đường tròn.c,Gọi E là giao điểm của OM và HB.Chứng minh EC là tiếp tuyến của (O;R)
Cho (O; R) có đường kính AB. Lấy điểm C trên đường tròn sao cho AC = R.
a) Tính BC theo R và các góc của ΔABC.
b) Gọi M là trung điểm của OA. Vẽ dây CD vuông góc với AB tại M. Chứng
minh: tứ giác ACOD là hình thoi.
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng AB tại E. Chứng minh: ED
là tiếp tuyến của (O).
d) Hai đường thẳng EC và DO cắt nhau tại F. Chứng minh: C là trung điểm của EF
từ điểm M nằm ngoài (O),kẻ tiếp tuyến MA với (O) (A là tiếp điểm ).Từ A kẻ đường thẳng vuông góc với OM tại H và cắt (O) tại B (B khác A).kẻ đường kính AC của (O).Tiếp tuyến tại C của (O) cắt đường thẳng AB tại E
a,c/minh 4 điểm E,H,O,C cùng thuộc một đường tròn
b,chứng minh \(\Delta ABC\) cân
c,Chứng minh BE.BM=BC.BO
Đường tròn (O) , bán kính R , A nằm ngoài đường tròn, OA=2R . Vẽ tiếp tuyến AB của đường tròn
â) CM: Tam giác OAB vg tại B , tính AB theo R
b) Từ B kẻ dây cung vuông góc OA tại H . CM: AC là tiếp tuyến (O)
c) CM: tam giác ABC đều
đ) Từ H vẽ đường thẳng vuông góc AB tại D, đường tròn đường kính AC cắt CD tại E. CM: A,E,F thẳng hàng