Trong mặt phẳng tọa độ Oxy. Ở các góc phần tư thứ I, thứ II, thứ III, thứ IV ta lần lượt lấy 1, 2, 3 và 4 điểm phân biệt (các điểm không nằm trên các trục tọa độ và ba điểm bất kì không thẳng hàng). Ta lấy 3 điểm bất kì trong 10 điểm trên. Tính xác suất để 3 điểm đó tạo thành tam giác có 2 cạnh đều cắt trục tọa độ.
A. 5 6 .
B. 2 5 .
C. 13 24 .
D. 15 29 .
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , . . . , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , ... , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , … , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh được lấy trong 10 điểm trên là
A.116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc P là:
A. 10 3
B. A 10 3
C. C 10 3
D. A 10 7
Trong mặt phẳng cho 2010 điểm phân biệt sao cho 3 điểm bất kì không thẳng hàng. Hỏi có bao nhiêu vecto mà có điểm đầu và điểm cuối thuộc 2010 điểm đã cho?
A. 2021055
B. 4038090
C. 4040100
D. 2019045
Cho một tam giác đều có cạnh 3 cm. Trong tam giác đó vẽ 10 điểm bất kì. Chứng minh rằng trong 10 điểm đó, luôn tồn tại 2 điểm có khoảng cách không lớn hơn 1 cm
Trong mặt phẳng tọa độ cho Oxy bốn điểm A(3;-5), B(-3;3) ,C(-1;-2) ,D(5;-10). Hỏi G 1 3 ; - 3 là trọng tâm của tam giác nào dưới đây?
A. ABC.
B. BCD.
C. ACD.
D. ABD
Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên?
A. 336
B. 56
C. 168
D. 84