Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , ... , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , … , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh được lấy trong 10 điểm trên là
A.116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc P là:
A. 10 3
B. A 10 3
C. C 10 3
D. A 10 7
Cho tâp ̣ A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác mà 3 đỉnh thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A .
A. n = 6
B. n = 12
C. n = 8
D. n = 15
Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên?
A. 336
B. 56
C. 168
D. 84
Cho tập A gồm n điểm phân biệt không có 3 điểm nào thẳng hàng. Tìm n biết rằng số tam giác mà 3 đỉnh thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.
A. n = 6.
B. n = 12.
C. n = 8.
D. n =15.
Từ 10 điểm trong một mặt phẳng mà với 3 điểm bất kì không thẳng hàng có thể tạo thành bao nhiêu tam giác?
A. A 10 3
B. 3!
C. C 10 3
D. 10 3
Trong mặt phẳng tọa độ Oxy. Ở các góc phần tư thứ I, thứ II, thứ III, thứ IV ta lần lượt lấy 1, 2, 3 và 4 điểm phân biệt (các điểm không nằm trên các trục tọa độ và ba điểm bất kì không thẳng hàng). Ta lấy 3 điểm bất kì trong 10 điểm trên. Tính xác suất để 3 điểm đó tạo thành tam giác có 2 cạnh đều cắt trục tọa độ.
A. 5 6 .
B. 2 5 .
C. 13 24 .
D. 15 29 .
Trong mặt phẳng cho 16 điểm , trong đó không có 3 điểm nào thẳng hàng
a, Hỏi vẽ được bao nhiêu doạn thẳng đi qua các điểm đã cho
b, Hỏi vẽ được bao nhiêu tam giác có 3 đỉnh là 3 điểm trong các điểm đã cho