Cho 10 điểm phân biệt. Hỏi có thể tạo ra bao nhiêu vectơ có điểm đầu và điểm cuối không trùng nhau được lấy từ 10 điểm trên?
A. C 10 2 .
B. A 10 2 .
C. 20
D. 2 10
Trong mặt phẳng tọa độ Oxy cho véctơ v → = l ; − 2 và điểm A 3 ; 1 . Ảnh của điểm A qua phép tịnh tiến theo véctơ v → là điểm A' có tọa độ
A. A ' − 2 ; − 3
B. A ' 2 ; 3
C. A ' 4 ; − 1
D. A ' − 1 ; 4
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;2;1), B(-2;1;3), C(2;-1;3), D(0;3;1). Mặt phẳng (P):ax+by+cz-10=0 đi qua hai điểm A, B và cách đều hai điểm C, D và hai điểm C, D nằm khác phía so với mặt phẳng (P). Tính S=a+b+c.
A. S=7.
B. S=15.
C. S=6.
D. S=13.
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):3x - 2y + 2z - 5 = 0 và (Q):4x + 5y - z + 1 = 0. Các điểm A, B phân biệt thuộc giao tuyến của hai mặt phẳng (P) và (Q). Véctơ A B → cùng phương với vecto nào sau đây?
A. w → = 3 ; - 2 ; 2
B. v → = - 8 ; 11 ; - 23
C. a → = 4 ; 5 ; - 1
D. u → = 8 ; - 11 ; - 23
Trong không gian Oxyz, cho các điểm A(6;0;0),B(0;3;0) và mặt phẳng (P):x-2y+2z=0. Gọi d là đường thẳng đi qua M(2;2;0), song song với (P) và tổng khoảng cách từ A,B đến đường thẳng d đạt giá trị nhỏ nhất. Véctơ nào dưới đây là một véctơ chỉ phương của d
A. u 1 → ( - 10 ; 3 ; 8 )
B. u 2 → ( 14 ; - 1 ; - 8 )
C. u 3 → ( 22 ; 3 ; - 8 )
D. u 4 → ( - 18 ; - 1 ; 8 )
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x-2y+2z-5=0 và (Q):4x+5y-z+1=0. Các điểm A,B phân biệt cùng thuộc giao tuyến của hai mặt phẳng (P) và(Q). Khi đó A B → cùng phương với véctơ nào sau đây?
A. v → = - 8 ; 11 ; - 23
B. k → = 4 ; 5 ; - 1
C. u → = 8 ; - 11 ; - 23
D. w → = 3 ; - 2 ; 2
Cho hai véctơ phân biệt và bằng nhau. Có bao nhiêu phép tịnh tiến khác nhau biến véctơ này thành vecto kia?
A. Vô số
B. 0
C. 2
D. 1
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , . . . , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , ... , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác