\(\dfrac{5}{2\sqrt{5}}=\dfrac{5\sqrt{5}}{2.5}=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{4+2\sqrt{2}}{5.2}=\dfrac{2+\sqrt{2}}{5}\)
\(\dfrac{y+b\sqrt{y}}{b\sqrt{y}}=\dfrac{y\sqrt{y}+by}{by}=\dfrac{\sqrt{y}+b}{b}\left(y>0;b\ne0\right)\)
\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}\cdot\sqrt{5}}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{2\sqrt{2}+\sqrt{2}\cdot\sqrt{2}}{5\sqrt{2}}=\dfrac{\sqrt{2}\cdot\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
\(\dfrac{y+b\sqrt{y}}{b\sqrt{y}}=\dfrac{\sqrt{y}\cdot\sqrt{y}+b\sqrt{y}}{b\sqrt{y}}=\dfrac{\sqrt{y}\left(\sqrt{y}+b\right)}{b\sqrt{y}}=\dfrac{\sqrt{y}+b}{y}\)