Cho hình thang cân ABCD có đáy nhỏ AB và hai cạnh bên đều có độ dài bằng 1. Tìm diện tích lớn nhất S m a x của hình thang.
Cho hình thang cân ABCD có đáy nhỏ AB. Biết AB và hai cạnh bên đều có độ dài bằng 1. Tìm diện tích lớn nhất của hình thang
A. 8 2 9
B. 4 2 9
C. 3 3 2
D. 3 3 4
Cho hình thang cân ABCD có đáy nhỏ AB=1, đáy lớn CD=3, cạnh bên A D = 2 quay quanh đường thẳng AB. Tính thể tích V của khối tròn xoay tạo thành.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC=a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2a 6 . Tính thể tích V của khối chóp S.ABCD?
Trong tất cả các hình chữ nhật có cùng chu vi bằng 16cm thì hình chữ nhật có diện tích lớn nhất bằng:
A. 30 c m 2
B. 20 c m 2
C. 16 c m 2
D. 36 c m 2
Trong tất cả các hình chữ nhật có cùng diện tích 48 c m 2 , hình chữ nhật có chu vi nhỏ nhất bằng:
A. 16 3 c m
B. 4 3 c m
C. 24 cm
D. 8 3 c m
Cho hình chóp S.ABCD có đáy là hình thang vuông ở A và D, cạnh đáy AB = a, cạnh đáy CD = 2a, AD = a. Hình chiếu vuông góc của S lên đáy trùng với trung điểm CD. Biết rằng diện tích mặt bên (SBC) bằng 3 a 2 2 . Thể tích của hình chóp S.ABCD bằng:
A. a 3 B. 3 a 3 2
C. 3 a 3 D. 3 2 a 3
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60°. Tính diện tích xung quanh và thể tích của hình nón có đỉnh S và đáy là đường tròn ngoại tiếp đáy hình chóp S.ABCD. Khi đó diện tích xung quanh và thể tích của hình nón bằng
A. S xq = πa 2 ; V = πa 3 6 12
B. S xq = πa 2 ; V = πa 3 3 12
C. S xq = 2 πa 2 ; V = πa 3 3 12
D. S xq = 2 πa 2 ; V = πa 3 6 6
Cho hình thang cân ABCD có các cạnh AB=2a; CD=4a và cạnh bên AD=BC=3a. Tính theo a thể tích V của khối tròn xoay thu được khi quay hình thang cân ABCD xung quanh trục đối xứng của nó.