Chọn C.
Phương pháp:
Viết phương trình đường thẳng dưới dạng phương trình đoạn chắn.
Cách giải:
Chọn C.
Phương pháp:
Viết phương trình đường thẳng dưới dạng phương trình đoạn chắn.
Cách giải:
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng a : x 1 = y 1 = z - 2 ; b : x + 1 - 2 = y 2 = z + 1 - 1 và mặt phẳng ( P ) : x - y - z = 0 . Viết phương trình của đường thẳng d song song với (P), cắt a và b lần lượt tại M và N mà M N = 2 .
A. d : 7 x - 4 3 = 7 y + 4 8 = 7 z + 8 - 5
B. d : 7 x + 4 3 = 7 y - 4 8 = 7 z + 8 - 5 .
C. d : 7 x - 1 3 = 7 y - 4 8 = 7 z + 3 - 5
D. d : 7 x - 1 3 = 7 y + 4 8 = 7 z + 8 - 5
Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình x - 2 2 + y + 2 2 = 4 và đường thẳng d : 3 x + 4 y + 7 = 0 . Gọi A B, là các giao điểm của đường thẳng d với đường tròn (C) . Tính độ dài dây cung AB.
A. AB = 3 .
B. AB = 2 5 .
C. AB = 2 3 .
D. AB = 4 .
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 2 1 = z + 1 3 và mặt phẳng P : x + y + z - 3 = 0 . Đường thẳng d ' là hình chiếu của d theo phương Ox lên (P), d ' nhận u → a ; b ; 2019 làm một véc tơ chỉ phương. Xác định tổng a + b
A. 2019
B. - 2019
C. 2018
D. - 2020
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3;3;1), B(0;2;1) và mặt phẳng (P): x+y+z-7=0. Phương trình đường thẳng d nằm trong (P) sao cho mọi điểm nằm trên d luôn cách đều A, B là
A. d : x - 1 = y - 7 3 = z - 2
B. d : x - 1 1 = y - 7 3 = z 2
C. d : x - 1 = y + 7 3 = z - 2
D. d : x + 1 1 = y - 7 3 = z - 4 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 3 - 1 = z - 1 1 cắt mặt phẳng P : 2 x - 3 y + z - 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng
A. 9
B. 5
C. 3
D. 7
Trong mặt phẳng tọa độ Oxy, cho đường tròn C 1 : x 2 + y 2 = 4 , C 2 : x 2 + y 2 - 12 x + 18 = 0 và đường thẳng d : x - y + 4 = 0 . Phương trình đường tròn có tâm thuộc C 2 , tiếp xúc với d và cắt C 1 tại hai điểm phân biệt A và B sao cho AB vuông góc với d là:
A. x - 3 2 + y - 3 2 = 4
B. x - 3 2 + y - 3 2 = 8
C. x + 3 2 + y + 3 2 = 8
D. x + 3 2 + y + 3 2 = 4
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + 3 y - 2 z + 2 = 0 và đường thẳng d : x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B, C a ; b ; c sao cho C là trung điểm của AB. Tổng a + b + c bằng
A. -15
B. -12
C. -5
D. 11