Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):x+3y-2z+2=0 và đường thẳng d: x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B và C(a;b;c) sao cho C là trung điểm của AB. Giá trị của biểu thức a+b+c bằng
A. -5
B. -12
C. -15
D. 11
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( P ) : x + 3 y - 2 z + 2 = 0 và đường thẳng d : x - 1 2 = y + 1 - 1 = z - 4 1 Đường thẳng qua A 1 ; 2 ; - 1 và cắt (P), d lần lượt tại B và C a ; b ; c sao cho C là trung điểm của AB. Giá trị của biểu thức a + b + c bằng
A. - 5 .
B. - 12 .
C. - 15 .
D. 11.
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x - 1 1 = y - 1 2 = z - 1 1 ; d 2 : x 1 = y + 1 2 = z - 6 - 5 . gọi A là giao điểm của d 1 v à d 2 ; d là đường thẳng qua điểm M (2; 3;1) cắt d 1 , d 2 lần lượt tại B, C sao cho B C = 6 A B . Tính khoảng cách từ O đến đường thẳng d, biết rằng d không song song với mặt phẳng (Oxz)
A. 10 5
B. 10 3
C. 13
D. 10
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 1 2 = y 1 = z - 2 1 và mặt phẳng (P) có phương trình x + y - 2z +5 = 0 và A(1;-1;2). Đường thẳng D cắt d và (P) lần lượt tại M và N sao cho A là trung điểm đoạn thẳng MN. Một vectơ chỉ phương của D là:
A. a → = 2 ; 3 ; 2
B. a → = 1 ; - 1 ; 2
C. a → = - 3 ; 5 ; 1
D. a → = 4 ; 5 ; - 13
Trong không gian với hệ tọa độ Oxyz cho ba đường thẳng d 1 : x = t y = 4 − t z = − 1 + 2 t , d 2 : x 1 = y − 2 − 3 = z − 3 v à d 3 : x + 1 5 = y − 1 2 = z + 1 1 . Gọi ∆ là đường thẳng cắt d 1 , d 2 , d 3 lần lượt tại các điểm A, B, C sao cho AB = BC. Phương trình đường thẳng ∆ là
A. x − 2 1 = y − 2 1 = z 1
B. x 1 = y − 2 1 = z 1
C. x 1 = y − 3 1 = z − 1 − 1
D. x 1 = y − 3 − 1 = z − 1 1
Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : x + 1 2 = y 1 = z - 2 1 , mặt phẳng P : x + y - 2 z + 5 = 0 và A ( 1 ; - 1 ; 2 ) . Đường thẳng ∆ cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN . Một vectơ chỉ phương của ∆ là:
A. u Δ → 2 ; 3 ; 2
B. u Δ → 1 ; - 1 ; 2
C. u Δ → - 3 ; 5 ; 1
D. u Δ → 4 ; 5 ; - 13
Trong hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 3 - 1 = z - 1 1 cắt mặt phẳng P : 2 x - 3 y + z - 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng
A. 9
B. 5
C. 3
D. 7
Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;3;-2) và hai đường thẳng d 1 : x - 1 1 = y - 2 3 = z 1 ; d 2 : x + 1 - 1 = y - 1 2 = z - 2 4 . Đường thẳng d qua M cắt d1; d2 lần lượt tại A và B. Độ dài đoạn thẳng AB bằng
A. 3
B. 2
C. 6
D. 5