AB=căn (3-0)^2+(4-4)^2=3
AC=căn 3^2+4^2=5
BC=căn (3-3)^2+(0-4)^2=4
AC^2=AB^2+BC^2
=>ΔABC vuông tại B
=>R=AC/2=2,5
AB=căn (3-0)^2+(4-4)^2=3
AC=căn 3^2+4^2=5
BC=căn (3-3)^2+(0-4)^2=4
AC^2=AB^2+BC^2
=>ΔABC vuông tại B
=>R=AC/2=2,5
) Trong mặt phẳng với hệ tọa độ Oxy Cho điểm A(1;-2) và B(3;4)
Viết phương trình đường tròn tâm A và và bán kính AB
Trong mặt phẳng tọa độ Oxy, đường tròn (C) tâm I(-3;4), bán kính R = 6 có phương trình là:
A. (x + 3 ) 2 + (y - 4 ) 2 = 36
B. (x - 3 ) 2 + (y + 4 ) 2 = 6
C. (x + 3 ) 2 + (y - 4 ) 2 = 6
D. (x - 3 ) 2 + (y + 4 ) 2 = 36
Trong mặt phẳng với hệ trục tọa độ Descarter vuông góc Oxy, cho tam giác ABC vuông tại A với B(-3;0) và C(7;0) , bán kính đường tròn nội tiếp tam giác là r= 2√10 -5. Tìm tọa độ tâm I của đường tròn nội tiếp tam giác ABC, biết I có tung độ dương.
Trong mặt phẳng với hệ trục tọa độ Descarter vuông góc Oxy, cho tam giác ABC vuông tại A với B(-3;0) và C(7;0) , bán kính đường tròn nội tiếp tam giác là r=2√10-5
. Tìm tọa độ tâm I của đường tròn nội tiếp tam giác ABC, biết I có tung độ dương.
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Giải thích cụ thể câu c cho mình.
Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.
Trong mặt phẳng tọa độ Oxy cho A(-2;2),B(6;6),C(2;-2).
a) Tìm tọa độ trực tâm H của tam giác ABC; tọa độ tâm đường tròn ngoại tiếp I tam giác ABC; tọa độ trọng tâm G của tam giác ABC.
b) Chứng minh : IH=-3IG.
c) Gọi AD là đường kính của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ABCD là hình bình hành.
mong mn giúp mình với ạ