Để hai đường thẳng đã cho song song với nhau, điều kiện cần là m2 + 2 = 6 ⇔ m2 = 4 ⇔ m = 2 hoặc m = –2
Với m = 2, hai đường thẳng đã cho trở thành y = 6x + 2 và y = 6x + 2 (loại vì chúng trùng nhau)
Với m = –2, hai đường thẳng đã cho trở thành y = 6x – 2 và y = 6x + 2 (thỏa mãn)
Vậy m = –2 là giá trị cần tìm
Để \(y=\left(m^2+2\right)x+m\) song song với y=6x+2 thì
\(\left\{{}\begin{matrix}m^2+2=6\\m< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)
=>m=-2