Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
THÙY TRANG

Trong mặt phẳng tọa độ Oxy ∆ : 2x-3y+1=0 và d: x+y-2=0 . viết pt đường thẳng ∆ ' đối xứng với ∆ qua d

THÙY TRANG
25 tháng 4 2020 lúc 20:40

Giúp mình với mình đang cần giải gấp trong hôm nay

Nguyễn Việt Lâm
25 tháng 4 2020 lúc 22:28

Gọi M là giao điểm d và \(\Delta\) , tọa độ M là nghiệm:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

\(\Delta'\) đối xứng \(\Delta\) qua d \(\Leftrightarrow\) d là phân giác góc tạo bởi \(\Delta\)\(\Delta'\)

Gọi \(A\left(2;0\right)\) là điểm thuộc d

Phương trình \(\Delta'\) qua M có dạng:

\(a\left(x-1\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-a-b=0\)

Áp dụng công thức k/c và tính chất phân giác:

\(d\left(A;\Delta'\right)=d\left(A;\Delta\right)\Leftrightarrow\frac{\left|2a-a-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|2.2-3.0+1\right|}{\sqrt{2^2+3^2}}\)

\(\Leftrightarrow\sqrt{13}\left|a-b\right|=5\sqrt{a^2+b^2}\)

\(\Leftrightarrow13\left(a-b\right)^2=25\left(a^2+b^2\right)\)

\(\Leftrightarrow6a^2+13ab+6b^2=0\Rightarrow\left[{}\begin{matrix}3a=-2b\\2a=-3b\end{matrix}\right.\)

Chọn \(a=2\Rightarrow b=-3\) ; \(a=3\Rightarrow b=-2\)

Có hai đường thẳng \(\Delta'\) thỏa mãn: \(\left[{}\begin{matrix}2x-3y+1=0\\3x-2y-1=0\end{matrix}\right.\)


Các câu hỏi tương tự
Trần Tố Trân
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Võ Yến Nhi
Xem chi tiết
Hùng Phùng Tuấn
Xem chi tiết
fghj
Xem chi tiết
Vương Tuấn Khải
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết