Trong mặt phẳng phức Oxy, tập hợp biểu diễn số phức z thỏa 1 ≤ z + 1 − i ≤ 2 là hình vành khăn. Diện tích S của hình vành khăn là bao nhiêu ?
A. S = 4 π
B. S = π
C. S = 2 π
D. S = 3 π
Tập hợp tất cả các điểm biểu diễn số phức z thỏa mãn 1 ≤ z ≤ 2 là một hình vành khăn có diện tích bằng
A. 5 π
B. π
C. 3 π
D. 4 π
Cho số phức z thỏa mãn điều kiện z - 3 + 4 i ≤ 2 . Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích bằng
A. S = 25 π
B. S = 4 π
C. S = 16 π
D. S = 9 π
Trong mặt phẳng tọa độ Oxy, gọi (H) là tập hợp điểm biểu diễn số phức w = ( 1 + 3 i ) z + 2 thỏa mãn | z - 1 | ≤ 2 . Tính diện tích của hình (H).
A. 8 π .
B. 12 π .
C. 16 π .
D. 4 π .
Cho số phức z thỏa mãn điều kiện 3 ≤ z − 3 i + 1 ≤ 5. Tập hợp các điểm biểu diễn của Z tạo thành một hình phẳng. Tính diện tích S của hình phẳng đó.
A. S = 25 π .
B. S = 8 π .
C. S = 4 π .
D. S = 16 π .
Cho số phức z thỏa mãn điều kiện z + 4 + z - 4 = 10 Tập hợp điểm biểu diễn số phức z trong mặt phẳng tọa độ Oxy là một hình phẳng có diện tích bằng
A. 20 π
B. 15 π
C. 12 π
D. 16 π
Cho hai số phức z, w thay đổi thỏa mãn z = 3 , z − w = 1 . Biết tập hợp điểm của số phức w là hình phẳng H. Tính diện tích S của hình H.
A. S = 20 π
B. S = 12 π
C. S = 4 π
D. S = 16 π
Cho số phức z thỏa mãn điều kiện z − 3 + 4 i ≤ 2 . Trong mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức w = 2 z + 1 − i là hình tròn có diện tích
A. 9 π
B. 12 π
C. 16 π
D. 25 π
Trong mặt phẳng tọa độ Oxy, gọi (H) là phần mặt phẳng chứ các điểm biểu diễn các số phức z thỏa mãn z 16 và 16 z có phần thực và phần ảo đều thuộc đoạn [0;1]. Tính diện tích S của (H)
A. S = 32 6 - π
B. S = 16 4 - π
C. S = 256
D. S = 64 π