Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng
A. - 10
B. 10
C. 12
D. - 20
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng P : x + 2 y - z + 3 = 0 và Q : x - 4 y + m - 1 z + 1 = 0 với m là tham số. Tìm tất cả các giá trị của tham số thực m để mặt phẳng (P) vuông góc với mặt phẳng (Q)
A. m = -6
B. m = -3
C. m = 1
D. m = 2
Trong không gian với hệ trục tọa độ Oxyz, tìm tất cả giá trị thực của tham số m để đường thẳng d : x - 2 - 2 = y - 1 1 = z 1 song song với mặt phẳng P : 2 x + 1 - 2 m y + m 2 z + 1 = 0 .
A. m ∈ - 1 ; 3
B. m=3
C. Không có giá trị nào của m
D. m=-1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z+m= 0 (m là tham số) và mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + z 2 = 16 . Tìm các giá trị của m để (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất.
A. - 1 - 4 3 ≤ m ≤ - 1 + 4 3 .
B. m ≠ 0 .
C. m =1.
D. m = -1
Trong không gian tọa độ Oxyz, tìm tất cả các giá trị của tham số m đường thẳng d : x - 2 - 2 = y + 2 1 = z - 1 1 song song với mặt phẳng P : 2 x + 1 - 2 m y + m 2 z + 1 = 0 .
A. m ∈ - 1 ; 3
B. m = 3
C. m = -1
D. Không có giá trị nào của m.
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x + 2 2 = y + 1 1 = z - 3 1 và mặt phẳng P : x + 2 y - z + 5 = 0 . Tìm tọa độ giao điểm M của đường thẳng d và mặt phẳng (P)
A . M ( - 1 ; 0 ; 4 )
B . M ( 1 ; 0 ; - 4 )
C . M ( 7 3 ; 5 3 ; 17 3 )
D . M ( - 5 ; - 2 ; 2 )
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x + y - z + 3 = 0 và đường thẳng d : x = 2 + m t y = n + 3 t z = 1 - 2 t . Với giá trị nào của m, n thì đường thẳng d nằm trong mặt phẳng (P)?
A. m = - 5 2 , n = 6
B. m = 5 2 , n = 6
C. m = 5 2 , n = - 6
D. m = - 5 2 , n = - 6
Trong không gian Oxyz, cho đường thẳng d : x - 1 2 m + 1 = y + 3 2 = z + 1 m - 2 , m ∉ - 1 2 , 2 và mặt phẳng (P): x+ y+ z−6 = 0. Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (P). Có bao nhiêu số thực m để Δ vuông góc với véctơ a → - 1 ; 0 ; 1 .
A. 2
B. 6.
C. 3.
D. 0.