Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): mx + 2y - z + 1 = 0 (m là tam số). Mặt phẳng (P) cắt mặt cầu (S): x - 2 2 + y - 1 2 + z 2 = 9 theo một đường tròn có bán kính bằng 2. Tìm tất cả các giá trị thực của tham số m.
A. m = ± 1
B. m = ± 2 + 5
C. m = 6 ± 2 5
D. m = ± 4
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x - 2 2 + y 2 + z 2 = 9 và mặt phẳng (P): x+y-z+m=0, m là tham số. Biết rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có bán kính r = 6 . Giá trị của tham số m thỏa mãn bằng
A. m=3 hoặc m=4
B. m=3 hoặc m=-5
C. m=1 hoặc m=-4
D. m=1 hoặc m=-5
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : m x + 2 y − z + 1 = 0 (m là tham số). Mặt phẳng (P) cắt mặt cầu S : x − 2 2 + y − 1 2 + z 2 = 9 theo một đường tròn có bán kính bằng 2. Tìm tất cả các giá trị thực của tham số m
A. m = ± 1
B. m = ± 2 + 5
C. m = 6 ± 2 5
D. m = ± 4
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng α có phương trình. 2 x + 2 y − z − 8 = 0. Xét mặt cầu S : x 2 + y 2 + z 2 − 2 x + 4 y − z + m = 0 , với m là tham số thực. Biết mặt phẳng α cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 2. Tìm tất cả các giá trị của m thỏa mãn điều kiện trên.
A. m = − 18
B. m = 21 4
C. m = 27 2
D. m = − 11
Trong không gian với hệ tọa độ Oxyz cho điểm A(0;1;2) mặt phẳng α : x - y + z - 4 = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M 1 ; 0 ; 0
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng (α):x+y+z-4=0 và mặt cầu S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox là
A. M(-1/2;0;0).
B. M(-1/3;0;0).
C. M(1;0;0).
D. M(1/3;0;0).
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng α : x - y + z = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M(1;0;0)
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian với hệ tọa độ O x y z , cho điểm A 0 ; 1 ; 2 , mặt phẳng α : x − y + z − 4 = 0 và mặt cầu S : x − 3 2 + y − 1 2 + z − 2 2 = 16 . Gọi P là mặt phẳng đi qua A , vuông góc với α và đồng thời P cắt mặt cầu S theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của P và trục x ' O x là
A. M − 1 2 ; 0 ; 0 .
B. M − 1 3 ; 0 ; 0 .
C. M 1 ; 0 ; 0 .
D. M 1 3 ; 0 ; 0 .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 x − 2 y − z − 9 = 0 và mặt cầu ( S ) : ( x − 3 ) 2 + ( y + 2 ) 2 + ( z − 1 ) 2 = 100 . Biết (P) cắt (S) theo giao tuyến là một đường tròn. Tìm tọa độ tâm của đường tròn giao tuyến.
A. (3;2;-1)
B. (-3;2;-1)
C. (3;-2;1)
D. (-3;2;1)