Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3) và mặt phẳng α : x - 2 y + z - 12 = 0 . Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng α
A. H(5;-6;7)
B. H(2;0;4)
C. H(3;-2;5)
D. H(-1;6;1)
Trong không gian với hệ tọa độ Oxyz cho điểm M(1;4;2) và mặt phẳng ( α ) : x + y + z - 1 = 0 . Tọa độ điểm M’ đối xứng với điểm M qua mặt phẳng (α) là
A. M’(0;-2;-3)
B. M’(-3;-2;0)
C. M’(-2;0;-3)
D. M’(-3;0;-2)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 3x – 2y + z + 6 = 0. Hình chiếu vuông góc của điểm A(2; –1;0) lên mặt phẳng (α) có tọa độ là
A. (1;0;3)
B. (–1;1;–1)
C. (2;–2;3)
D. (1;1;–1)
Trong không gian với hệ tọa độ Oxyz, xác định tọa độ điểm M' là hình chiếu vuông góc của điểm M 2 ; 3 ; 1 lên mặt phẳng α : x - 2 y + z = 0
A. M ' 2 ; 5 2 ; 3
B. M'(3;4;2)
C. M ' 5 2 ; 2 ; 3 2
D. M'(1;3;5)
Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0.
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α).
Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0.
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : 2 y − z + 4 = 0 và điểm M(−1;0;−1). Xác định tọa độ hình chiếu vuông góc của M lên mặt phẳng (P)
A. H − 1 ; 4 ; 3
B. H − 1 ; 0 ; 0
C. H − 1 ; - 2 ; 0
D. H − 1 ; 2 ; - 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng α : x - y + z = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M(1;0;0)
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ nằm trong mặt phẳng α : x+y+z-3=0 đồng thời đi qua điểm M(1;2;0) và cắt đường thẳng d: x - 2 2 = y - 2 1 = z - 3 1 . Một vectơ chỉ phương của ∆ là:
A. u → = (1;1;-2)
B. u → = (1;0;-1)
C. u → = (1;-1;-2)
D. u → = (1;-2;1)