Đáp án A.
Nhìn vào phương trình γ , để tính m + n ta cần có y = - 1 .
Cho y = - 1 ⇒ α : 2 x - 5 z - 2 = 0 β : x - 2 z - 1 = 0 ⇔ x = 1 z = 0
Thay vào γ , ta được m + n = - 4 .
Đáp án A.
Nhìn vào phương trình γ , để tính m + n ta cần có y = - 1 .
Cho y = - 1 ⇒ α : 2 x - 5 z - 2 = 0 β : x - 2 z - 1 = 0 ⇔ x = 1 z = 0
Thay vào γ , ta được m + n = - 4 .
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (α): x +y +2z +1 =0; (β): x +y –z +2 =0; (γ):x –y +5 =0. Mệnh đề nào sau đây sai?
A. α ⊥ γ
B. (α)//(γ).
C. γ ⊥ β
D. α ⊥ β
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng α : x + y - z + 1 = 0 v à β : - 2 x + m y + 2 z - 2 = 0 . Tìm m để mặt phẳng (α) song song với mặt phẳng (β).
A. m = 2
B. m = 5
C. Không tồn tại
D. m = -2
Trong không gian với hệ trục tọa độ Oxyz, có bao nhiêu giá trị của tham số m để cho hai mặt phẳng α : x + y + z - 1 = 0 và β : x + y + m 2 z + m - 2 = 0 song song với nhau?
A. 0
B. 1
C. 2
D. 3
Trong không gian tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + 4 x - 6 y + m = 0 và đường thẳng ∆ là giao tuyến của hai mặt phẳng α : x + 2 y - 2 z - 4 = 0 và β : 2 x - y - z + 1 = 0 . Đường thẳng ∆ cắt mặt cầu (S) tại hai điểm phân biệt A, B thỏa mãn A B = 8 khi:
A. m = 12
B. m = -12
C. m = -10
D. m = 5
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( α ) + x + 2 y - z - 1 = 0 và ( β ) : 2 x + 4 y - mz - 2 = 0 . Tìm m để hai mặt phẳng ( α ) và ( β ) song song với nhau.
A. m= 1.
B. Không tồn tại m.
C. m = -2.
D. m = 2.
Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng α : x + 3 y - z + 1 = 0 ; β : 2 x - y + z - 7 = 0 .
A. x + 2 2 = y - 3 = z + 3 - 7
B. x - 2 2 = y 3 = z - 3 - 7
C. x - 2 = y - 3 - 3 = z - 10 7
D. x - 2 - 2 = y 3 = z - 3 7
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( P ) : x + y – z – 4 = 0 và điểm M (1;–2;-2). Tọa độ điểm N đối xứng với điểm M qua mặt phẳng (P) là
A. N (3;4;8)
B. N (3;0;–4)
C. N (3;0;8)
D. N (3;4;–4)
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng P , Q và R lần lượt có phương trình P : x + m y - z + 2 = 0 ; Q : m x - y + z + 1 = 0 và R : 3 x + y + 2 z + 5 = 0 . Gọi d m là giao tuyến của hai mặt phẳng P và Q . Tìm m ra để đường thẳng vuông góc với mặt phẳng R
A. m = 1 m = - 1 3
B. m = 1
C. m = - 1 3
D. Không có m