Ta có:
+) Tìm tọa độ điểm A x 0 ; y 0 ; z 0 thuộc hai mặt phẳng α ; β :
Chọn y 0 = 0 ⇒ x 0 ; z 0 là nghiệm của hệ phương trình:
Chọn D.
Ta có:
+) Tìm tọa độ điểm A x 0 ; y 0 ; z 0 thuộc hai mặt phẳng α ; β :
Chọn y 0 = 0 ⇒ x 0 ; z 0 là nghiệm của hệ phương trình:
Chọn D.
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ toạ độ Oxyz, cho ba mặt phẳng ( α ) :x+2y-z-1=0, ( β ) :2x+y-z-3=0, ( λ ) :ax+by+z+2=0 cùng đi qua một đường thẳng. Giá trị của biểu thức a+b bằng
A. 3.
B. 0.
C. -3
D. 6.
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.
Trong không gian Oxyz, có đường thẳng d là giao tuyến của hai mặt phẳng P : x + y + z = 3 và Q : x - y + z = 5 . Mặt phẳng (α) chứa đường thẳng d và đi qua gốc tọa độ có phương trình là
A. x + 4 y + z = 0
B. 5 x + 4 y + z = 0
C. x - 4 y + z = 0
D. 5 x - 4 y + z = 0
Trong không gian Oxyz, coh đường thẳng d là giao tuyến của hai mặt phẳng P : x + y + z = 3 và P : x - y + z = 5 . Mặt phẳng α chứa đường thẳng d và đi qua gốc tọa độ có phương trình là
A. x + 4 y + z = 0
B. 5 x + 4 y + z = 0
C. x - 4 y + z = 0
D. 5 x - 4 y + z = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7
Trong không gian với hệ toạ độ Oxyz, đường thẳng vuông góc với mặt phẳng ( α ) :x+y-z+3=0 và cắt hai đường thẳng d 1 : x + 1 2 = y + 1 2 = z - 2 - 1 ; d 2 : x - 1 - 1 = y - 2 1 = z - 3 3 là
A. x + 1 - 1 = y + 1 - 1 = z - 2 1
B. x - 1 1 = y 1 = z - 1 - 1
C. x - 1 1 = y - 2 1 = z - 3 - 1
D. x - 1 1 = y - 1 = z - 1 1