Trong không gian Oxyz, coh đường thẳng d là giao tuyến của hai mặt phẳng P : x + y + z = 3 và P : x - y + z = 5 . Mặt phẳng α chứa đường thẳng d và đi qua gốc tọa độ có phương trình là
A. x + 4 y + z = 0
B. 5 x + 4 y + z = 0
C. x - 4 y + z = 0
D. 5 x - 4 y + z = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 1 1 = z - 2 - 2 và mặt phẳng (P): x + 2y + z - 6 = 0. Mặt phẳng (Q) chứa d và cắt (P) theo giao tuyến là đường thẳng ∆ cách gốc tọa độ O một khoảng ngắn nhất. Viết phương trình mặt phẳng (Q)
A. x - y + z - 4 = 0
B. x + y + z + 4 = 0
C. x + y + z - 4 = 0
D. x + y - z - 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+y+z-4=0 và hai đường thẳng d 1 : x - 3 2 = y - 2 1 = z - 6 5 ; d 2 : x - 6 3 = y 2 = z - 1 1 . Phương trình đường thẳng d nằm trong mặt phẳng (P) và cắt hai đường thẳng d 1 , d 2 là:
A. x - 1 - 1 = y - 1 2 = z - 1 - 3
B. x - 1 2 = y - 1 - 3 = z - 1 - 1
C. x - 1 - 3 = y - 1 2 = z - 1 - 1
D. x - 1 2 = y - 1 - 1 = z - 1 - 3
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ nằm trong mặt phẳng α : x+y+z-3=0 đồng thời đi qua điểm M(1;2;0) và cắt đường thẳng d: x - 2 2 = y - 2 1 = z - 3 1 . Một vectơ chỉ phương của ∆ là:
A. u → = (1;1;-2)
B. u → = (1;0;-1)
C. u → = (1;-1;-2)
D. u → = (1;-2;1)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;1;1) và mặt phẳng ( α ) : x + y + z - 4 = 0 và mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x - 6 y - 8 z + 18 = 0 . Phương trình đường thẳng d đi qua M và nằm trong mặt phẳng ( α ) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất là
A. △ : x - 2 1 = y - 1 - 2 = z - 1 1
B. △ : x + 2 1 = y + 1 - 2 = z + 1 1
C. △ : x - 2 1 = y - 1 2 = z - 1 - 3
D. △ : x - 2 1 = y - 1 - 2 = z - 1 - 1