Trong không gian Oxyz, xét mặt cầu (S) có phương trình dạng x 2 + y 2 + z 2 - 4 x + 2 y - 2 a z + 10 a = 0 . Tập hợp các giá trị thực của a để (S) có chu vi đường tròn lớn bằng 8 π là
A. 1 ; 10
B. - 10 ; 2
C. - 1 ; 11
D. 1 ; - 11
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ toạ độ Oxyz, xét ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c là các số thực thay đổi thoả mãn 1 a - 2 b + 2 c = 1 . Biết rằng mặt cầu (S): ( x - 2 ) 2 + y 2 + ( z - 4 ) 2 = 25 cắt mặt phẳng (ABC) theo giao tuyến là một đường tròn có bán kính bằng 4. Giá trị của biểu thức a+b+c bằng
A. 5.
B. 1.
C. 2.
D. 4.
Trong không gian Oxyz, cho đường thẳng △ : x - 3 1 = y - 1 3 = z - 2 - 1 . Có tất cả bao nhiêu giá trị thực của m để phương trình x 2 + y 2 + z 2 - 4 z + 2 m y - 2 m + 1 z + m 2 + 2 m + 8 = 0 là phương trình của một mặt cầu (S) sao cho có duy nhất một mặt phẳng chứa Δ và cắt (S) theo giao tuyến là một đường tròn có bán kính bằng 1.
A. 1
B. 6.
C. 7.
D. 5.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z+m= 0 (m là tham số) và mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + z 2 = 16 . Tìm các giá trị của m để (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất.
A. - 1 - 4 3 ≤ m ≤ - 1 + 4 3 .
B. m ≠ 0 .
C. m =1.
D. m = -1
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 1 = z - 2 2 và mặt cầu (S): (x-2)2 + y2 + (z-1)2 =1. Gọi (P) và (Q) là ai mặt phẳng chứa đường thẳng (d) và tiếp xúc với mặt cầu (S) lần lượt tại M và N. Độ dài dây cung MN có giá trị bằng
A. 4
B. 3 2
C. 2
D. 2
Trong không gian với hệ tọa độ Oxyz giả sử tồn tại mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 4 x + 2 y - 2 a z + 10 a = 0 . Tập tất cả các giá trị của a để (S) có chu vi đường tròn lớn bằng 8 π là
A. {1;-11}
B. {1;10}
C. {-1;1}
D. {-10;2}
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y + 1 ) 2 ( z + 1 ) 2 = 9 và điểm A(2;3;-1). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình:
A. 6x+8y+11=0
B. 3x+4y+2=0
C. 3x+4y-2=0
D. 6x+8y-11=0
Trong không gian Oxyz, cho mặt phẳng (P): 2x + y + 2z + 2 =0 và cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 10 Bán kính của đường tròn giao tuyến giữa (P) và (S) là
A. 7
B. 10
C. 3
D. 1