Đáp án B
Phương pháp:
Mặt phẳng có 1 VTPT là n → = ( A ; B ; C )
Cách giải:
Mặt phẳng (P): 2x – y +3z – 2 = 0 có một véc tơ pháp tuyến n → = ( 2 ; - 1 ; 3 )
Đáp án B
Phương pháp:
Mặt phẳng có 1 VTPT là n → = ( A ; B ; C )
Cách giải:
Mặt phẳng (P): 2x – y +3z – 2 = 0 có một véc tơ pháp tuyến n → = ( 2 ; - 1 ; 3 )
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng P : 2 x - y - 2 z - 2 = 0 . (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a ; b ; 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
A. a - b = - 1
B. a + b = - 2
C. a - b = 1
D. a + b = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): 2x-y-2z-2=0. (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a , b , 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x − 4 y + 3 z − 2 = 0. Một vecto pháp tuyến của mặt phẳng (P) là:
A. n 1 → = 0 ; − 4 ; 3 .
B. n 2 → = 1 ; 4 ; 3 .
C. n 3 → = − 1 ; 4 ; − 3 .
D. n 4 → = − 4 ; 3 ; − 2 .
Trong không gian Oxyz, cho mặt phẳng P : x − 3 z + 2 = 0. Vecto nào sau đây là một vecto pháp tuyến của (P)?
A. w → = 1 ; 0 ; − 3
B. v → = 2 ; − 6 ; 4
C. u → = 1 ; − 3 ; 0
D. n → = 1 ; − 3 ; 2
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) song song với hai đường thẳng d 1 : x - 2 2 = y + 1 - 3 = z 4 , d 2 : x = 2 + t y = 3 + 2 t z = 1 - t . Vecto nào sau đây là vecto pháp tuyến của mặt phẳng (P) ?
A. n ⇀ = ( 5 ; - 6 ; 7 )
B. n ⇀ = ( - 5 ; - 6 ; 7 )
C. n ⇀ = ( - 5 ; 6 ; - 7 )
D. n ⇀ = ( - 5 ; 6 ; 7 )
Trong không gian Oxyz, mặt phẳng P : 2 x − y + 3 z − 1 = 0 có một vectơ pháp tuyến là:
A. n 1 → = 2 ; − 1 ; 3 .
B. n 2 → = 2 ; − 1 ; − 1 .
C. n 3 → = − 1 ; 3 ; − 1 .
D. n 4 → = 2 ; − 1 ; − 3 .
Trong không gian Oxyz, mặt phẳng (P): 2x - y + 3z - 1 = 0 có một vectơ pháp tuyến là
A. n 1 → = 2 ; - 1 ; 3
B. n 2 → = 2 ; - 1 ; - 1
C. n 3 → = - 1 ; 3 ; - 1
D. n 4 → = 2 ; - 1 ; - 3
Trong không gian Oxyz, mặt phẳng P : 2 x - y + 3 z - 1 = 0 có một vectơ pháp tuyến là:
A. n 1 → = 2 ; - 1 ; 3
B. n 2 → = 2 ; - 1 ; - 1
C. n 3 → = - 1 ; 3 ; - 1
D. n 4 → = 2 ; - 1 ; - 3