Trong không gian Oxyz, coh đường thẳng d là giao tuyến của hai mặt phẳng P : x + y + z = 3 và P : x - y + z = 5 . Mặt phẳng α chứa đường thẳng d và đi qua gốc tọa độ có phương trình là
A. x + 4 y + z = 0
B. 5 x + 4 y + z = 0
C. x - 4 y + z = 0
D. 5 x - 4 y + z = 0
Trong không gian Oxyz, có đường thẳng d là giao tuyến của hai mặt phẳng P : x + y + z = 3 và Q : x - y + z = 5 . Mặt phẳng (α) chứa đường thẳng d và đi qua gốc tọa độ có phương trình là
A. x + 4 y + z = 0
B. 5 x + 4 y + z = 0
C. x - 4 y + z = 0
D. 5 x - 4 y + z = 0
Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng α : x + 3 y - z + 1 = 0 ; β : 2 x - y + z - 7 = 0 .
A. x + 2 2 = y - 3 = z + 3 - 7
B. x - 2 2 = y 3 = z - 3 - 7
C. x - 2 = y - 3 - 3 = z - 10 7
D. x - 2 - 2 = y 3 = z - 3 7
Trong không gian với hệ tọa độ Oxyz cho điểm A(0;1;2) mặt phẳng α : x - y + z - 4 = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M 1 ; 0 ; 0
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Trong không gian Oxyz cho điểm M (2;1;1), mặt phẳng α : x + y + z - 4 = 0 và mặt cầu ( s ) : ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 . Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
A. (4; -3; 3)
B. (4; -3; -3)
C. (4; 3; 3)
D. (-4; -3; -3)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng (α):x+y+z-4=0 và mặt cầu S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox là
A. M(-1/2;0;0).
B. M(-1/3;0;0).
C. M(1;0;0).
D. M(1/3;0;0).
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng α : x - y + z = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M(1;0;0)
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + 4 x - 6 y + m = 0 và đường thẳng ∆ là giao tuyến của hai mặt phẳng α : x + 2 y - 2 z - 4 = 0 và β : 2 x - y - z + 1 = 0 . Đường thẳng ∆ cắt mặt cầu (S) tại hai điểm phân biệt A, B thỏa mãn A B = 8 khi:
A. m = 12
B. m = -12
C. m = -10
D. m = 5