Trong không gian với hệ tọa độ Oxyz cho hai điểm A - 1 ; - 1 ; 0 , B 3 ; 1 ; - 1 . Điểm M thuộc trục Oy và cách đều hai điểm A, B có tọa độ là:
A. M 0 ; 9 2 ; 0
B. M 0 ; 9 4 ; 0
C. M 0 ; - 9 4 ; 0
D. M 0 ; - 9 2 ; 0
Trong không gian với hệ tọa độ Oxyz cho hai véc tơ a → = 3 ; 0 ; 2 , c → = 1 ; − 1 ; 0 . Tìm tọa độ của véc tơ b → thỏa mãn biểu thức 2 b → − a → + 4 c → = 0 →
A. 1 2 ; − 2 ; − 1
B. − 1 2 ; 2 ; 1
C. − 1 2 ; − 2 ; 1
D. − 1 2 ; 2 ; − 1
Trong không gian với hệ tọa độ Oxyz, cho các véctơ a → = 1 ; − 3 ; 0 , b → = 0 ; 9 ; − 3 , c → = 5 ; 5 ; 5 , d → = 2 ; 3 ; − 3 . Biết d → = x . a → + y . b → + z . c → . Tính tổng x + y + z .
A. 5
B. 4
C. 6
D. 3
Trong không gian với hệ tọa độ Oxyz, cho A(l;-1;0), B(0;2;0), C(2;1;3). Tọa độ điểm M thỏa mãn M A ⇀ - M B ⇀ + M C ⇀ = 0 ⇀ là
A. (3; 2; -3)
B. (3; -2; 3)
C. (3; -2; -3)
D. (3; 2; 3)
Trong không gian với hệ trục tọa độ Oxyz cho các véctơ a → = ( 1 ; - 3 ; 0 ) , b → ( 0 ; 9 ; - 3 ) , c → ( 5 ; 5 ; 5 ) , d → ( 2 ; 3 ; - 3 ) . Biết d → = x . a → + y . b → + z . c → . Tính tổng x + y + z
A. 4
B. 5
C. 3
D. 6
Trên mặt phẳng tọa độ Oxyz, cho các điểm A(1;0;3), B(2;3;-4), C(-3;1;2). Xét điểm D sao cho ABCD là hình bình hành. Khi đó tọa độ của D là
A. (-4;2;9)
B. (4;-2;9)
C. (-4;-2;9)
D. (4;2;-9)
Trong không gian với hệ trục tọa độ Oxyz, cho A ( 3 ; − 1 ; − 3 ) , B ( − 3 ; 0 ; − 1 ) , C ( − 1 ; − 3 ; 1 ) và mặt phẳng ( P ) : 2 x + 4 y + 3 z − 19 = 0 . Tọa độ M ( a , b , c ) thuộc (P) sao cho M A → + 2 M B → + 5 M C → đạt giá trị nhỏ nhất. Khi đó a + b + c bằng:
A. 4
B. 5
C. 6
D. 7
Trong không gian với hệ tọa độ Oxyz cho A(-3;0;0), B(0;0;3), C(0;-3;0) và mặt phẳng P : x + y + z − 3 = 0. Tìm trên (P) điểm M sao cho M A → + M B → − M C → nhỏ nhất
A. M(3;3;-3)
B. M(-3;-3;3)
C. M(3;-3;3)
D. M(-3;3;3)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S)
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5