Trong không gian với hệ tọa độ Oxyz, cho hai điểm: B ( - 1 ; - 1 ; 0 ) , C ( 3 ; 1 ; - 1 ) . Điểm M trên trục Oy cách đều hai điểm B, C có tọa độ là
A. M 0 ; - 9 4 ; 0
B. M 0 ; 4 9 ; 0
C. M 0 ; 0 ; 0
D. M 0 ; 9 4 ; 0
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng ( P ) : 2 x + 2 y + z - 3 = 0 . Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
A. M(-7;3;2)
B. M(2;3;-7)
C. M(3;2;-7)
D. M(3;-7;2)
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian với hệ tọa độ Oxyz cho hai điểm M(2;0;0), N(1;1;1). Mặt phẳng (P) thay đổi qua M, N cắt các trục Oy, Oz lần lượt tại B(0;b;0), C(0;0;c) b ≠ 0 , c ≠ 0 . Hệ thức nào sau đây là đúng?
A. bc = 2(b + c)
B. b c = 1 b + 1 c
C. bc = b + c
D. bc = b - c
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;0), B(-3;2;-4) và mặt phẳng P : x + 2 y + z − 3 = 0 . Gọi M(a,b,c) là điểm thuộc mặt phẳng (P) sao cho tam giác MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1.
B. T = 2.
C. T = 0.
D. T = 3.
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(–1; –2;0), B(0; –4;0), C(0;0; –3). Phương trình mặt phẳng (P) nào dưới đây đi qua A, gốc tọa độ O và cách đều hai điểm B và C?
A. (P): 6x – 3y + 5z = 0
B. (P): 6x – 3y + 4z = 0
C. (P): 2x – y – 3z = 0
D. (P): 2x – y + 3z = 0
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng (P): x+2y+z+1=0 và (Q):2x-y+2z+4=0 . Gọi M là điểm thuộc mặt phẳng (P) sao cho điểm đối xứng của M qua mặt phẳng (Q) nằm trên trục hoành . Tung độ của điểm M bằng
A. 4.
B. 2.
C. -5
D. 3
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A 0 ; 0 ; − 3 , B 2 ; 0 ; − 1 và mặt phẳng P : 3 x − 8 y + 7 z − 1 = 0 . Điểm C a ; b ; c là điểm nằm trên mặt phẳng (P), có hoành độ dương để tam giác ABC đều. Tính a − b + 3 c .
A. - 7
B. - 9
C. - 5
D. - 3
Trong không gian hệ trục tọa độ Oxyz, cho mặt phẳng x+y-2z+1=0 và hai điểm A(1;2;-1), B(2;3;0). Quỹ tích điểm M trên (P) để diện tích tam giác MAB nhỏ nhất là
A. x = y - 1 = z - 1
B. x - 1 1 = y + 2 2 = z - 1 3
C. x - 2 2 = y 1 = z - 1 1
D. x - 1 - 1 = y - 2 2 = z + 2 1