a) \(1-cot^4x=\frac{2}{sin^2x}-\frac{1}{sin^4x}\)
b)\(\frac{1-2sinx.cosx}{cos^2-sin^2}\)\(=\frac{1-tanx}{1+tanx}\)\(\)
c)\(\frac{sin^2x}{sinx-cosx}+\frac{sinx+cosx}{1-tanx}=sinx+cosx\)
d)\(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=\frac{2.cosx}{|sin|}\)
e)\(tan^3x+tan^2x+tanx+1=\frac{sinx+cosx}{cos^3x}\)
CMR:
a, \(\frac{\cot^2x-\sin^2x}{\cot^2x-tan^2x}=sin^2x.\cos^2x\)
b, \(\frac{\tan x}{1-\tan^2x}.\frac{\cot^2-1}{\cot x}=1\)
c, \(\frac{1+\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\tan x+1}{\cot x+1}\)
d, \(\frac{\sin x+\cos x-1}{\sin x-cosx+1}=\frac{\cos x}{1+sinx}\)
Khẳng định nào sau đây đúng:
\(A.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sin^2x \)
\(B.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sin2x\)
\(C.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sin4x\)
\(D.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sinx\)
Giải các pt
a) \(\sqrt{2}\sin\left(2x+\dfrac{\pi}{4}\right)=3\sin x+\cos x+2\)
b) \(\dfrac{\left(2-\sqrt{3}\right)\cos x-2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2\cos x-1}=1\)
c) \(2\sqrt{2}\cos\left(\dfrac{5\pi}{12}-x\right)\sin x=1\)
\(\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2cos\dfrac{x}{2}sin\dfrac{x}{2}}\)
\(0< x< 90\), chứng minh
Rúi gọn biểu thức :
\(A=\dfrac{\cos\left(x\right)+\cos\left(2x\right)+\cos\left(3x\right)}{\sin\left(x\right)+\sin\left(2x\right)+\sin\left(3x\right)}\)
Biết \(sinx+cosx=m\).
Tính giá trị biểu thức sau theo m: \(sin^3x+cos^3x\)
Trong các hệ thức sau, hệ thức nào không đúng ?
(A) (sin α+cos α)^2=1+2sin α cos α;
(B) (sinα−cosα)2=1−2sinαcosα(sinα−cosα)2=1−2sinαcosα;
(C) cos^4α−sin^4α=cos^2α−sin^2α;
(D) cos^4α+sin^4α=1.
cho mình hỏi: chứng minh đẳng thức này: \(\sin^2x\left(1+\cot x\right)x+\cos^2\left(1+\tan x\right)=\left(\sin x+\cos x\right)^2\)có thể giải bằng cách lấy VT - VP = 0 có dc ko và tại sao ?
chứng minh đẳng thức này \(\frac{\sin x+\cos x-1}{\sin x-\cos x+1}=\frac{\cos x}{1+\sin x}\) có thể quy đồng rồi lấy VT - VP = 0 có dc ko và tại sao ?
Thanks nhiều