\(21,\left(x-1\right).\left(x+1\right).\left(1+x^2\right)\)
\(=\left(x^2-1^2\right).\left(x^2+1\right)\)
\(=\left(x^2-1\right).\left(x^2+1\right)\)
\(=\left(x^2\right)^2-1^2\)
\(=x^4-1\)
\(22,\left(x-2\right).\left(x+2\right).\left(x^2+4\right)\)
\(=\left(x^2-2^2\right).\left(x^2+4\right)\)
\(=\left(x^2-4\right).\left(x^2+4\right)\)
\(=\left(x^2\right)^2-4^2\)
\(=x^4-16\)
21: \(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\)
\(=\left(x^2\right)^2-1^2=x^4-1\)
22: \(\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=\left(x^2\right)^2-4^2=x^4-16\)