1. Trên mặt phẳng tọa độ Oxy có 3 điểm A(\(\sqrt{x+1}\); -37), B (-5;20) C (7;-16) thẳng hàng khi x=?
2. Cho \(x\ge1;y\ge1\)và \(3\sqrt{x-1}+4\sqrt{y-1}=5\)
Cho hàm số \(y=\left(m-1\right)x^2\) \(\left(m\ne1\right)\) có đồ thị là parabol (P)
a, Xác định m để (P) đi qua điểm \(A\left(-\sqrt{3};1\right)\)
b, Với giá tị m vừa tìm được ở trên, hãy;
i, Vẽ (P) trên mặt phẳng tọa độ
ii, Trong các điểm A(1;1), B\(\left(-1;\dfrac{1}{3}\right)\) và C(15;-75), điểm nào thuộc (P), điểm nào không thuộc (P) ?
iii, Tìm các điểm trên (P) có hoành độ bằng 1
iv, Tìm các điểm trên (P) có tung độ gấp đôi hoành độ
Trên mp tọa độ Oxy cho 3 điểm A(căn a;-37), B(-5;20); C(7;-16)
để A,B,C thẳng hàng thì a=?
Cho hàm số y= \(\dfrac{12}{5}x\)
a) Xác định vị trí điểm A (\(-1,\dfrac{-12}{5}\)) trên mặt phẳng tọa độ và vẽ đồ thị hàm số;
b) b) Xét xem trong các điểm B \(\left(2;\dfrac{-24}{5}\right),C\left(3;\dfrac{35}{5}\right),D\left(0;2,5\right),E\left(-100;0\right),\)điểm nào thuộc đồ thị hàm số?
Trên mặt phẳng tọa độ Oxy cho đường thẳng (d):\(\left(y\right)=\left(2m-3\right)x+4m-3\). Gọi H là khoảng cách từ điểm O đến đường thẳng (d). Tìm giá trị lớn nhất của h.
Trên mặt phẳng tọa độ Oxy, cho đường thẳng d: \(y=\left(m-1\right)x+m-3\). Hãy xác định m để:
a) Diện tích của tam giác tạo bởi đường thẳng đã cho với trục Ox và Oy bằng 2,2016 đơn vị diện tích
b) Khoảng cách từ O tới đường thẳng d lớn nhất
c) Khoảng cách từ điểm \(A\left(2016,2017\right)\) đến đường thẳng d là 3 đơn vị độ dài
Mong các bạn giải chi tiết hộ mình nha!
1, Giải hệ phương trình :\(\left\{{}\begin{matrix}x+y+\left|x\right|=10\\x+y-\left|x\right|=-8\end{matrix}\right.\)
2, Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=2(m-1)x-\(m^2\) +6 và parabol (P) : \(y=x^2\)
a, Với m=3 tìm tọa độ giao điểm của (d) và (P)
b, Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có tổng bình phương các hoành độ là 16
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=2x-2m+2 và parabol (P):y=x^2
a,Xác định các tọa độ giao điiểm của parabol (P)tại 2 điểm (d) khi m=-1/2
b,Tìm m để đường thẳng (d) vắt parabol (P) tại 2 điểm phân biệt \(A\left(x;y\right);B\left(x_2;y_2\right)\) sao cho \(y_1+y_2=4\left(x_1+x_2\right)\)
câu 1: rút ngọn biểu thức sau
\(A=\left(2\sqrt{3}+4\sqrt{27}-\sqrt{108}\right)\div2\sqrt{3}\)
\(B=\sqrt{9+4\sqrt{5}}-2\left(\sqrt{5}+1\right)\)
câu 2:
trong mặt phẳng tọa độ Oxy, cho ba đường thẳng (d1):y=x+2, (d2) : y=-x +4 và (d3) : y=mx+m. (m là tham số thực ).
a) vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ Oxy.
b) xác định các giá trị của hàm số m để đường thẳng (d3) đi qua giao điểm của (d1) và (d2).
câu 3:
Anh Hoàng thiết kế một ngôi nhà với phần mái có dạng hình tam giác cân ABC. Biết rằng góc tạo bởi phần mái và mặt phẳng nằm ngang là 28°, chiều dài mỗi bên mái là 3,8 m (minh họa như hình bên dưới). Tính khoảng cách giữa hai điểm B, C.
Câu 4. Cho nửa đường tròn tâm O, đường kính AB. Lấy điểm C thuộc nửa đường tròn (C khác A, khác B) sao cho CA <CB. Và OM vuông góc với AC, ON vuông góc với BC (M thuộc AC, N thuộc BC).
a) Chứng minh tứ giác OMCN là hình chữ nhật.
b) Tiếp tuyến tại A của nửa đường tròn tâm O cắt BC tại E, vẽ CH vuông góc với AB (H thuộc AB). Chứng minh: EC.CB = AH.AB.
c) Tiếp tuyến tại B của nửa đường tròn tâm O cắt ON tại F, OM cắt AE tại I. Chứng mình IF là tiếp tuyến của nửa đường tròn tâm O.