Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Giang

tính

a, \(\left[\dfrac{17}{2}-\left(\dfrac{-3}{7}+\dfrac{5}{3}\right)\right]\)

b, \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+\dfrac{2009}{3}+....+\dfrac{1}{2011}}\)

c, \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.9}+....+\dfrac{1}{44.49}\right)\dfrac{1-3-5-7-...-49}{89}\)

d, 1+\(\dfrac{1}{2}\)(1+2)+\(\dfrac{1}{3}\left(1+2+3\right)+....+\dfrac{1}{20}\left(1+2+....+20\right)\)

e, \(\left[\left(-3,2\right):\dfrac{16}{5}\right]+\left(\dfrac{1}{49}-\dfrac{1}{3^2}\right).\left(\dfrac{1}{49}-\dfrac{1}{4^2}\right).....\left(\dfrac{1}{49}-\dfrac{1}{2022^2}\right)\)

f, 50+\(\dfrac{50}{3}+\dfrac{25}{3}+\dfrac{20}{4}+\dfrac{10}{3}+\dfrac{100}{6.7}+....+\dfrac{100}{98.99}+\dfrac{1}{99}\)

Nguyễn Lê Phước Thịnh
16 tháng 6 2024 lúc 20:40

a: \(\left[\dfrac{17}{2}-\left(-\dfrac{3}{7}+\dfrac{5}{3}\right)\right]=\dfrac{17}{2}+\dfrac{3}{7}-\dfrac{5}{3}\)

\(=\dfrac{17\cdot21+3\cdot6-5\cdot14}{42}=\dfrac{305}{42}\)

b: \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\left(1+\dfrac{2010}{2}\right)+\left(1+\dfrac{2009}{3}\right)+...+\left(\dfrac{1}{2011}+1\right)+1}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2012}}=\dfrac{1}{2012}\)

c: 

\(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{44\cdot49}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{44\cdot49}\right)\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{45}{196}=\dfrac{9}{196}\)

1-3-5-...-49

Số số hạng trong khoảng từ 3 đến 49 là:

(49-3):2+1=46:2+1=24(số)

Tổng của các số lẻ trong khoảng từ 3 đến 49 là:

\(\left(49+3\right)\cdot\dfrac{24}{2}=12\cdot52=624\)

=>1-3-5-...-49=1-624=-623

\(\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{9}{196}\cdot\dfrac{-623}{89}=\dfrac{-63}{196}=-\dfrac{9}{28}\)

d: \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)

\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{20}\cdot\dfrac{20\cdot21}{2}\)

\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{21}{2}=\dfrac{2+3+4+...+21}{2}\)

\(=\dfrac{\left(21+2\right)\cdot\dfrac{20}{2}}{2}=23\cdot\dfrac{20}{4}=23\cdot5=115\)

e: \(\left[\left(-3,2\right):\dfrac{16}{5}\right]+\left(\dfrac{1}{49}-\dfrac{1}{3^2}\right)\cdot\left(\dfrac{1}{49}-\dfrac{1}{4^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{2022^2}\right)\)

\(=\left(-3,2\right):3,2+\left(\dfrac{1}{49}-\dfrac{1}{49}\right)\cdot\left(\dfrac{1}{49}-\dfrac{1}{9}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{2022^2}\right)\)

=-1+0

=-1

f: \(50+\dfrac{50}{3}+\dfrac{25}{3}+...+\dfrac{100}{98\cdot99}+\dfrac{1}{99}\)

\(=\dfrac{100}{2}+\dfrac{100}{6}+\dfrac{100}{12}+...+\dfrac{100}{98\cdot99}+\dfrac{100}{99\cdot100}\)

\(=100\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=100\cdot\left(1-\dfrac{1}{100}\right)=99\)


Các câu hỏi tương tự
Xử Nữ Chính Là Tôi
Xem chi tiết
Ai thích tui
Xem chi tiết
Xem chi tiết
Xử Nữ Chính Là Tôi
Xem chi tiết
Xem chi tiết
ỵyjfdfj
Xem chi tiết
Trương Ngọc Linh
Xem chi tiết
Top1phiphaiVinh_Phuc
Xem chi tiết
Hoa Vô Khuyết
Xem chi tiết
Nguyễn Thị Minh Huệ
Xem chi tiết