\(=5\sqrt{2a}-2.3\sqrt{2a}+3.6\sqrt{2a}+\sqrt{a}=5\sqrt{2a}-6\sqrt{2a}+18\sqrt{2a}+\sqrt{a}=-\sqrt{2a}+18\sqrt{2a}+\sqrt{a}=17\sqrt{2a}+\sqrt{a}\)
\(=5\sqrt{2a}-2.3\sqrt{2a}+3.6\sqrt{2a}+\sqrt{a}=5\sqrt{2a}-6\sqrt{2a}+18\sqrt{2a}+\sqrt{a}=-\sqrt{2a}+18\sqrt{2a}+\sqrt{a}=17\sqrt{2a}+\sqrt{a}\)
Thực hiện phép tính:
a) (\(\dfrac{6}{\sqrt{3}}\) - 2\(\sqrt{48}\)) (\(\sqrt{3}\) - 1)
b) \(\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-3}\) - \(\sqrt{9-4\sqrt{5}}\)
c) 3\(\sqrt{2a}\) - \(\sqrt{18a^3}\) + 4\(\sqrt{\dfrac{a}{2}}\) - \(\dfrac{1}{4}\)\(\sqrt{128a}\) với a \(\ge\) 0
Rút gọn biểu thức:
\(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}vớia\ge0\)\(\sqrt{5a}.\sqrt{45a}-3avớia\ge0\)\(4\sqrt{16a^6}-6a^3\rightarrow kq2TH\)\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^4}\)\(\sqrt{\frac{27.\left(a-3\right)^2}{48}}vớia< 3\)\(\frac{\sqrt{63y^3}}{\sqrt{7y}}vớiy>0\)\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^2}}vớia< 0,b\ne0\)\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}+\sqrt{b^3}}{a-b}\left(a\ge0;b\ge0;a\ne b\right)\)\(\frac{2a+\sqrt{ab}-3b}{2a-5\sqrt{ab}+3b}\left(a,b\ge0;4a\ne9b\right)\)C1. Tính:
a) \(\left(3\sqrt{\frac{3}{5}}-\sqrt{\frac{5}{3}}+\sqrt{5}\right)2\sqrt{5}+\frac{2}{3}\sqrt{75}\)
b) \(\left(\sqrt{3}-1\right)^2-\sqrt{\left(1-\sqrt{3}\right)^2}+\sqrt{\left(-3\right)^2.3}\)
C2. Tính
P = \(\frac{a-b}{\sqrt{a}+\sqrt{b}}+\frac{a\sqrt{a}-b\sqrt{b}}{a+b+\sqrt{ab}}\) , \(a\ge0,b\ge0,a\ne b\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
B1 Rút gọn
a)\(\sqrt{6+2\sqrt{5}}-\sqrt{29-12\sqrt{2}}\)
b)\(\frac{2}{x^2y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\left(x\ge0;y\ge0;x\ne y\right)\)
c)\(\frac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\left(a>\frac{1}{2}\right)\)
B2 giải pt
\(\sqrt{3-x}+3\sqrt{12-4x}-5\sqrt{48-16x}=-39\)
HELP ME!!!!
Rút gọn
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right).\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
Chứng minh các đẳng thức sau
a) \(\left(\frac{2\sqrt{6}-\sqrt{3}}{2\sqrt{2}-1}+\frac{5+2\sqrt{5}}{2+\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
b) \(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}=-a\)(Với b<a<0
c)\(\left(\sqrt{a}+\frac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)với a\(\ge0\),a khác 1
d) \(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right)40\sqrt{15}=600\)
e) \(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)với x\(\ge0;x\ne1\)
\(\sqrt{48.45}\) Đưa thừa số ra ngoài dấu căn:
\(\sqrt{225.17}\)
\(\sqrt{a^3b^7}với\) \(a\ge0;b\ge0\)
\(\sqrt{x^5\left(x-3\right)^2}\) với \(x>0\)
Rút gọn:
a)\(2\sqrt{3x}-4\sqrt{3x}\)+\(27-2\sqrt{3x}\)(\(x\ge0\))
b)\(3\sqrt{2x}-5\sqrt{8x}\)+\(7\sqrt{8x}+28\)\(\left(x\ge0\right)\)
c)\(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\)\(\left(x\ge0,y\ge0,x\ne y\right)\)
d)\(\frac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\)
Rút gọn
\(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
B1. Với \(x\ge0,x\ne4.Chobiểuthức\)
\(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{2-\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{1}{x\sqrt{x}+27}\)
a, tính giá trị biểu thức khi B= 1/4
b, Rút gọn A
c, Tìm giá trị của x để A>1/2
d, Với C= B : A. Tìm GTLN C