\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Leftrightarrow2S=9+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(\Leftrightarrow2S-S=9-\frac{3}{2^9}\)
\(\Leftrightarrow S=9-\frac{3}{2^9}=\frac{4605}{512}\)
Vậy S = \(\frac{4605}{512}\)
S=3+3/2+3/22+.....+3/29
S=3.(1+1/2+1/22+....+1/29)
Đặt A=1+1/2+1/22+......+1/29)
Ta có:2A=2+1+1/2+....+1/28
=>2A-A=(2+1+1/2+....+1/28)-(1+1/2+1/22+....+1/29)
=>A=2-1/29
Khi đó S=3.(2-1/29)=6-3/29=3069/512