A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
Lời giải:
$A=5(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{2019.2023})$
$4A=5(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{2019.2023})$
$=5(\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{2023-2019}{2019.2023})$
$=5(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{2019}-\frac{1}{2023})$
$=5(\frac{1}{3}-\frac{1}{2023})=\frac{2020}{6069}$
$\Rightarrow A=\frac{2020}{6069}:4=\frac{505}{6069}$
A = \(\dfrac{5}{3.7}\) + \(\dfrac{5}{7.11}\) + \(\dfrac{5}{11.15}\)+...+ \(\dfrac{5}{2019.2023}\)
A = 5.(\(\dfrac{1}{3.7}\) + \(\dfrac{1}{7.11}\) + \(\dfrac{1}{11.15}\) + ... + \(\dfrac{1}{2019.2023}\))
A = \(\dfrac{5}{4}\).( \(\dfrac{4}{3.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{4}{11.15}\) + ... + \(\dfrac{4}{2019.2023}\))
A = \(\dfrac{5}{4}\).( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) +\(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{2019}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{5}{4}\). ( \(\dfrac{1}{3}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{5}{4}\) . \(\dfrac{2020}{6069}\)
A = \(\dfrac{2525}{6069}\)