Một cái trống trường có bán kính hai đáy đều bằng 25 cm, thiết diện vuông góc với trục và cách đều hai đáy có chu vi 70 π (cm). Chiều cao của trống bằng 80 cm. Biết rằng mặt phẳng chứa trục cắt mặt xung quanh của trống là các parabol (như hình vẽ). Hỏi thể tích của trống?
A. 254259,6 c m 3
B. 127129,8 c m 3
C. 80933,3 c m 3
D. 253333,3 c m 3
Cho khối nón cụt có R, r lần lượt là bán kính hai đáy và h = 3 là chiều cao. Biết thể tích khối nón cụt là V = π tìm giá trị lớn nhất của biểu thức P = R + 2r.
A. 2 3
B. 3
C. 3 3
D. 2
Một khối trụ có thể tích bằng 25 π . Nếu chiều cao khối trụ tăng lên năm lần và giữ nguyên bán kính đáy thì khối trụ mới có diện tích xung quanh bằng 25. Bán kính đáy của khối trụ ban đầu là:
A. r = 10
B. r = 5
C. r = 2
D. r = 15
Một hình trụ có bán kính đáy r = 5 cm chiều cao h = 7 cm. Tính diện tích xung quanh của hình trụ.
A. 85 π c m 2
B. 35 π c m 2
C. 35 3 π c m 2
D. 70 π c m 2
Một hình trụ có bán kính đáy r = 5 cm, chiều cao h = 7 cm. Tính diện tích xung quanh của hình trụ.
A. S x q = 35 π cm 2
B. S x q = 70 π cm 2
C. S x q = 35 3 π cm 2
D. S x q = 70 3 π cm 2
Một hình trụ có bán kính đáy r = 5cm và có khoảng cách giữa hai đáy bằng 7 cm.
a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.
b) Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục 3 cm. Hãy tính diện tích của thiết diện được tạo nên.
Cho hình nón (N) có bán kính r = 20(cm), chiều cao h = 60(cm) và mọt hình trụ (T) nội tiếp hình nón (N) (hình trụ (T) có một đáy thuộc đáy hình nón và một đáy nằm trên mặt xung quanh của hình nón). Tính thể tích V của hình trụ (T) có diện tích xung quanh lớn nhất?
A. V=3000 π ( cm 3 ) .
B. V= 32000 9 π ( cm 3 ) .
C. V=3600 π ( cm 3 ) .
D. V=4000 π ( cm 3 ) .
Cho hình trụ có bán kính đáy bằng 3 cm, độ dài đường cao bằng 4cm Tính diện tích xung quanh của hình trụ này.
A. 24 π ( c m 2 )
B. 22 π ( c m 2 )
C. 26 π ( c m 2 )
D. 20 π ( c m 2 )
Cho hình trụ có bán kính đáy 3 cm, đường cao 4 cm. Tính diện tích xung quanh của hình trụ.
A. 24 π c m 2
B. 36 π c m 2
C. 24 c m 2
D. 36 c m 2