Đặt \(A=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
=>\(A^3=9+\sqrt{80}+9-\sqrt{80}+3\cdot\sqrt[3]{\left(9+\sqrt{80}\right)\left(9-\sqrt{80}\right)}\cdot A\)
=>\(A^3=18+3A\)
=>\(A^3-3A-18=0\)
=>\(A^3-3A^2+3A^2-9A+6A-18=0\)
=>\(\left(A-3\right)\left(A^2+3A+6\right)=0\)
mà \(A^2+3A+6=\left(A+\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0\forall A\)
nên A-3=0
=>A=3
