\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+8}=1+\dfrac{1}{2.3:2}+\dfrac{1}{3.4:2}+...+\dfrac{1}{8.9:2}\)
\(=1+2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}\right)=1+2.\left(\dfrac{1}{2}-\dfrac{1}{9}\right)=1+2.\dfrac{7}{18}=\dfrac{16}{9}\)