\(a,\dfrac{5}{6}\times\dfrac{4}{5}+\dfrac{4}{5}\times\dfrac{1}{6}+\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{5}{6}+\dfrac{1}{6}+1\right)=\dfrac{4}{5}\times2=\dfrac{8}{5}\)
\(b,60\times\left(\dfrac{105}{180}+\dfrac{48}{180}\right)=60\times\dfrac{17}{20}=51\)
a) \(\dfrac{5}{6}\times\dfrac{4}{5}+\dfrac{4}{5}\times\dfrac{1}{6}+\dfrac{4}{5}\)
\(=\dfrac{5}{6}\times\dfrac{4}{5}+\dfrac{4}{5}\times\dfrac{1}{6}+\dfrac{4}{5}\times1\)
\(=\dfrac{4}{5}\times\left(\dfrac{5}{6}+\dfrac{1}{6}+1\right)\)
\(=\dfrac{4}{5}\times2\)
\(=\dfrac{8}{5}\)
b) \(60\times\left(\dfrac{7}{12}+\dfrac{4}{15}\right)\)
\(=60\times\dfrac{17}{20}\)
\(=\dfrac{1020}{20}\)
\(=51\)
\(\dfrac{5}{6}\)x\(\dfrac{4}{5}+\dfrac{4}{5}\)x\(\dfrac{1}{6}\)+\(\dfrac{4}{5}\)
=> \(\dfrac{5}{6}\)x\(\dfrac{4}{5}+\dfrac{4}{5}\)x\(\dfrac{1}{6}+\dfrac{4}{5}\)x1
=> \(\dfrac{4}{5}\)x\(\left(\dfrac{5}{6}+\dfrac{1}{6}+1\right)\)
=> \(\dfrac{4}{5}\)x2
=> \(\dfrac{8}{5}\)
b) 60 x\(\left(\dfrac{7}{12}+\dfrac{4}{15}\right)\)
=> 60 x \(\dfrac{17}{20}\)
=>51