\(\lim\limits\dfrac{3^{2n}+5}{4^{n+2}-9^{n-1}}=\lim\dfrac{9^n+5}{16.4^n-\dfrac{1}{9}.9^n}=\lim\dfrac{1+5.\left(\dfrac{1}{9}\right)^n}{16.\left(\dfrac{4}{9}\right)^n-\dfrac{1}{9}}\)
\(=\dfrac{1+5.0}{16.0-\dfrac{1}{9}}=-9\)
\(\lim\limits\dfrac{3^{2n}+5}{4^{n+2}-9^{n-1}}=\lim\dfrac{9^n+5}{16.4^n-\dfrac{1}{9}.9^n}=\lim\dfrac{1+5.\left(\dfrac{1}{9}\right)^n}{16.\left(\dfrac{4}{9}\right)^n-\dfrac{1}{9}}\)
\(=\dfrac{1+5.0}{16.0-\dfrac{1}{9}}=-9\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
Tính giới hạn I = lim 2 n ( 3 - n ) + 1 1 + 3 + 5 + . . + ( 2 n - 1 ) .
A. I = 2
B. I = 1
C. I = -2
D. I = -3
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n-4.2^{n+1}-3}{3.2^n+4^n}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{2-5^{n-2}}{3^n+2.5^n}\right)\)
Tính giới hạn: \(lim\left(\dfrac{2n^2+3n}{n+1}-\dfrac{2n^3-3}{n^2-1}\right)\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n+1}{2^n-1}\right)\)
1) Tính giới hạn \(K=\lim\limits_{n\rightarrow\infty}\left(\dfrac{3.2^n-3^n}{2^{n+1}+3^{n+1}}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\right)\)
Tính giới hạn: \(lim\left(\dfrac{n+1}{n^2+2n}-\dfrac{1}{n-1}\right)\)
1) Tính \(I=\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2}-\sqrt{n^2-1}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2n+2}+n\right)\)