\(\lim\limits\left(\dfrac{2n^2+3n}{n+1}-\dfrac{2n^3-3}{n^2-1}\right)\)
\(=\lim\limits\left(\dfrac{2n^2+3n}{n+1}-\dfrac{2n^3-3}{\left(n-1\right)\cdot\left(n+1\right)}\right)\)
\(=\lim\limits\dfrac{\left(2n^2+3n\right)\left(n-1\right)-2n^3+3}{\left(n+1\right)\left(n-1\right)}\)
\(=\lim\limits\dfrac{2n^3-2n^2+3n^2-3n-2n^3+3}{\left(n+1\right)\left(n-1\right)}\)
\(=\lim\limits\dfrac{n^2-3n+3}{n^2-1}\)
\(=\lim\limits\dfrac{1-\dfrac{3}{n}+\dfrac{3}{n^2}}{1-\dfrac{1}{n^2}}=\dfrac{1-0+0}{1-0}=1\)