\(u^2=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
=> \(u^3=u^2.u=\left(7+4\sqrt{3}\right)\left(2+\sqrt{3}\right)=26+15\sqrt{3}\)
và \(u^4=\left(7+4\sqrt{3}\right)^2=97+56\sqrt{3}\)
Vậy P = \(97+56\sqrt{3}-5\left(26+15\sqrt{3}\right)+6\left(7+4\sqrt{3}\right)-5\left(2+\sqrt{3}\right)\)
P = \(\left(97-130+42-10\right)+\left(56\sqrt{3}-75\sqrt{3}+24\sqrt{3}-5\sqrt{3}\right)\)
P = -1