\(log_216=log_22^4=4\)
\(log_32187=log_33^7=7\)
\(log_{10}\dfrac{1}{100}=log_{10}10^{-2}=-2\)
\(log10000=log10^4=4\)
\(9^{log_312}=3^{2log_312}=3^{log_3144}=144\)
\(8^{log_25}=2^{3log_25}=2^{log_2125}=125\)
\(\left(\dfrac{1}{25}\right)^{log_5\dfrac{1}{3}}=5^{-2log_5\dfrac{1}{3}}=5^{log_59}=9\)
\(\left(\dfrac{1}{4}\right)^{log_23}=2^{-2log_23}=2^{log_2\dfrac{1}{9}}=\dfrac{1}{9}\)