\(\dfrac{3-2\sqrt{2}+2}{\sqrt{3-2\sqrt{2}}}=\dfrac{\left(\sqrt{2}-1\right)^2+2}{\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\left(\sqrt{2}-1\right)^2+2}{\left|\sqrt{2}-1\right|}=\dfrac{\left(\sqrt{2}-1\right)^2+2}{\sqrt{2}-1}=\sqrt{2}-1+\dfrac{2}{\sqrt{2}-1}=\sqrt{2}-1+\dfrac{2\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2}-1+2\left(\sqrt{2}+1\right)=3\sqrt{2}+1\)