Đáp án B.
Ta có y ' = 2 x .
Phương trình tiếp tuyến của đường cong y = x 2 tại điểm có hoành độ bằng 2 có dạng y = 2.2 x − 2 + 2 2 ⇔ y = 4 x − 4 .
Hình phẳng cần tính diện tích là phần kẻ sọc.
Vậy S = ∫ 0 2 x 2 − 4 x + 4 d x = 8 3 . Ta chọn B.
Đáp án B.
Ta có y ' = 2 x .
Phương trình tiếp tuyến của đường cong y = x 2 tại điểm có hoành độ bằng 2 có dạng y = 2.2 x − 2 + 2 2 ⇔ y = 4 x − 4 .
Hình phẳng cần tính diện tích là phần kẻ sọc.
Vậy S = ∫ 0 2 x 2 − 4 x + 4 d x = 8 3 . Ta chọn B.
Tính diện tích hình phẳng giới hạn bởi đường cong y = x2 +1, tiếp tuyến với đường thẳng này
tại điểm M(2;5) và trục Oy.
Cho hình phẳng (H) giới hạn bởi đường cong (C): y = e x , tiếp tuyến của (C) tại điểm M(1;e) và trục Oy. Diện tích của (H) bằng
A. (e+2)/2.
B. (e-1)/2.
C. (e+1)/2.
D. (e-2)/2.
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x),y=0,x=0,x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0,x=a bằng
A. S/4.
B. 4S.
C. 2S.
D. S/2.
Diện tích hình phẳng được giới hạn bởi đường cong y = x 2 và đường thẳng y = 2 x + 3 , trục hoành trong miền x ≥ 0 bằng
A. 12
B. 32 3
C. 9
D. 5 3
Diện tích hình phẳng được giới hạn bởi đường cong y = x 2 và đường thẳng y = 2 x + 3 , trục hoành trong miền x ≥ 0 bằng
A. 12
B. 9
C. 5 3
D. 32 3
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x=0 có diện tích bằng:
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = − 1 ; x = 0 có diện tích bằng:
A. 2 5 .
B. 1 9 .
C. 2 9 .
D. 1 5 .
Cho Parabol P : y = 2 x 2 . Gọi d là tiếp tuyến với (P) tại điểm có hoành độ bằng 2. Tính diện tích hình phẳng giới hạn bởi đồ thị (P), đường thẳng d và đường thẳng x=1.
A. 2 3
B. 1 2
C. 1 3
D. 3 2
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A − 1 ; 0 . Tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2. Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0, x=2 bằng 28 5 (phần tô đậm trong hình vẽ).
Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x= -1, x=0 có diện tích bằng
A. 2 5
B. 1 9
C. 2 9
D. 1 5