3y(8y-4)-6y(4y-3)=30
=>(24y2-12y)-(24y2-18y)=30
=>-6y=30
=>y=-5
Ta có : 3y(8y-4)-6y(4y-3)=30
=>(24y2-12y)-(24y2-18y)=30
=>-6y=30
=>y=-5
3y(8y-4)-6y(4y-3)=30
=>(24y2-12y)-(24y2-18y)=30
=>-6y=30
=>y=-5
Ta có : 3y(8y-4)-6y(4y-3)=30
=>(24y2-12y)-(24y2-18y)=30
=>-6y=30
=>y=-5
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
\(\left(2x+4y\right)^2:\left(2x+4y\right)-\left(9x^3-12x^2-3x\right):\left(-3x\right)-3\cdot\left(x^2+3\right)\)
\(\left(13x^2y^2-5x^4+6y^4-13x^3y-13xy^3\right):\left(2y^2-x^2-3xy\right)\)
chia đa thức
Phân tích các đa thức sau thành nhân tử :
a/ \(10x\left(x-y\right)-6y\left(y-x\right)\)
b/ \(14x^2y-21xy^2+28x^3y^2\)
c/ \(x^2-4+\left(x-2\right)^2\)
d/ \(\left(x+1\right)^2-25\)
e/ \(x^2-4y^2-2x+4y\)
f/ \(x^2-25-2xy+y^2\)
g/ \(x^3-2x^2+x-xy^2\)
h/ \(x^3-4x^2-12x+27\)
i/ \(x^2+5x-6\)
m/ \(6x^2-7x+2\)
n/ \(4x^4+81\)
Tính
a. \(6x^2.\left(3x^2-4x+5\right)\)
b.\(\left(x-2y\right)\left(3xy+6y^2+x\right)\)
c.\(\left(18x^4y^3-24x^3y^4+12x^3y^3\right):\left(-6x^2y^3\right)\)
Bài 2 : Chứng minh các biểu thức sau không phụ thuộc vào biến x và y
A = \(\left(3x-6y\right)\left(x^2+2xy+4y^2\right)-3\left(x^3-8y^3+10\right)\)
B = \(\left(2x-1\right)\left(x^2+x-1\right)-\left(x-5\right)^2-2\left(x+1\right)\left(x^2-x+1\right)-7\left(x-2\right)\)
1. Làm tính chia :
\(\left(x^3+8y^3\right):\left(x+2y\right)\)
2. Tìm số tự nhiên n để phép chia sau là phép chia hết :
a) \(\left(5x^3-3x^2+x\right):3x^n\)
b) \(\left(12x^3y^7+9x^4y^5-3x^5y^8\right):3x^{n+1}y^{n+3}\)
Thực hiện phép tính:
a) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x+y\right)\)
c) \(\left(x+3y\right)^2\)
d) \(\left(4x-y\right)^3\)
e) \(\left(x^2-2y\right)\left(x^2+2y\right)\)
g) \(18x^4y^2z:10x^4y\)
h) \(\left(x^3y^3+\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
i) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
k) \(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\)
l) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
m) \(\dfrac{2x+3}{10x-4}+\dfrac{5-3x}{4-10x}\)
n) \(\dfrac{x}{x^2+2x+1}+\dfrac{3}{5x^2-5}\)
o) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
p) \(\dfrac{4x+2}{15x^3y}\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
q) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)
r) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
x) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
y) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
z) \(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
t) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
w) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
\(S=a^3+b^3+6ab-8=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+6ab-8\)
Đặt \(\hept{\begin{cases}a+b=x\\ab=y\end{cases}}\)
\(\Rightarrow S=x\left(x^2-3y\right)6y-8\)
\(=x^3-3xy+6y-8\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(-3xy+6y\right)+\left(4x-8\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-3y\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-3y+4\right)\)
Thế ngược lại ta được
\(S=\left(a+b-2\right)\left(a^2+b^2-ab+2a+2b+4\right)\)
Bài này nhé Tầm Tầm. Tin nhắn làm không nổi nên làm trên này cho dễ xem nhé