Sửa đề: Tìm x,y nguyên biết
Ta có: \(x^3y=xy^3+1997\)
=>\(x^3y-xy^3=1997\)
=>\(xy\left(x^2-y^2\right)=1997\)
=>xy(x-y)(x+y)=1997
Đặt A=xy(x-y)(x+y)
TH1: x chẵn; y chẵn
=>xy chẵn
=>xy(x-y)(x+y)⋮2
=>A⋮2(1)
TH2: x chẵn, y lẻ
=>xy chẵn
=>xy(x-y)(x+y)⋮2
=>A⋮2(2)
TH3: x lẻ; y chẵn
=>xy chẵn
=>A=xy(x-y)(x+y)⋮2(3)
TH4: x lẻ; y lẻ
=>x+y chẵn
=>(x+y)(x-y)xy⋮2
=>A⋮2(4)
Từ (1),(2),(3),(4) suy ra A⋮2
mà A=1997
và 1997 không chia hết cho 2
nên (x;y)∈∅